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Preface

Why is this book different from all other books on mathematical probability and statistics? The key
aspect is the book’s consistently applied approach, especially important for engineering students.

The applied nature comes is manifested in a number of senses. First, there is a strong emphasis
on intution, with less mathematical formalism. In my experience, defining probability via sample
spaces, the standard approach, is a major impediment to doing good applied work. The same holds
for defining expected value as a weighted average. Instead, I use the intuitive, informal approach
of long-run frequency and long-run average. I believe this is especially helpful when explaining
conditional probability and expectation, concepts that students tend to have trouble with. (They
often think they understand until they actually have to work a problem using the concepts.)

On the other hand, in spite of the relative lack of formalism, all models and so on are described
precisely in terms of random variables and distributions. And the material is actually somewhat
more mathematical than most at this level in the sense that it makes extensive usage of linear
algebra.

Second, the book stresses real-world applications. Many similar texts, notably the elegant and
interesting book for computer science students by Mitzenmacher, focus on probability, in fact
discrete probability. Their intended class of “applications” is the theoretical analysis of algorithms.
I instead focus on the actual use of the material in the real world; which tends to be more continuous
than discrete, and more in the realm of statistics than probability. This should prove especially
valuable, as “big data” and machine learning now play a significant role in applications of computers.

Third, there is a strong emphasis on modeling. Considerable emphasis is placed on questions such
as: What do probabilistic models really mean, in real-life terms? How does one choose a model?
How do we assess the practical usefulness of models? This aspect is so important that there is
a separate chapter for this, titled Introduction to Model Building. Throughout the text, there is
considerable discussion of the real-world meaning of probabilistic concepts. For instance, when
probability density functions are introduced, there is an extended discussion regarding the intuitive
meaning of densities in light of the inherently-discrete nature of real data, due to the finite precision
of measurement.
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Finally, the R statistical /data analysis language is used throughout. Again, several excellent texts
on probability and statistics have been written that feature R, but this book, by virtue of having a
computer science audience, uses R in a more sophisticated manner. My open source tutorial on R
programming, R for Programmers (http://heather.cs.ucdavis.edu/~matloff/R/RProg.pdf),
can be used as a supplement. (More advanced R programming is covered in my book, The Art of
R Programming, No Starch Press, 2011.)

There is a large amount of material here. For my one-quarter undergraduate course, I usually
cover Chapters 6}, [7 and My lecture style is conversational,
referring to material in the book and making lots of supplementary remarks (“What if we changed
the assumption here to such-and-such?” etc.). Students read the details on their own. For my

one-quarter graduate course, I cover Chapters 27, 77, and

As prerequisites, the student must know calculus, basic matrix algebra, and have some skill in
programming. As with any text in probability and statistics, it is also necessary that the student
has a good sense of math intuition, and does not treat mathematics as simply memorization of
formulas.

The K TEXsource .tex files for this book are in http://heather.cs.ucdavis.edu/~matloff/132/
PLN, so readers can copy the R code and experiment with it. (It is not recommanded to copy-and-
paste from the PDF file, as hidden characters may be copied.) The PDF file is searchable.

The following, among many, provided valuable feedback for which I am very grateful: Ibrahim
Ahmed; Ahmed Ahmedin; Stuart Ambler; Earl Barr; Benjamin Beasley; Matthew Butner; Michael
Clifford; Dipak Ghosal; Noah Gift; Laura Matloff; Nelson Max, Connie Nguyen, Jack Norman,
Richard Oehrle, Michael Rea, Sana Vaziri, Yingkang Xie, and Ivana Zetko.

Many of the data sets used in the book are from the UC Irvine Machine Learning Repository, http:
//archive.ics.uci.edu/ml/. Thanks to UCI for making available this very valuable resource.

The book contains a number of references for further reading. Since the audience includes a number
of students at my institution, the University of California, Davis, I often refer to work by current
or former UCD faculty, so that students can see what their professors do in research.

This work is licensed under a Creative Commons Attribution-No Derivative Works 3.0 United States
License. The details may be viewed at http://creativecommons.org/licenses/by-nd/3.0/us/,
but in essence it states that you are free to use, copy and distribute the work, but you must
attribute the work to me and not “alter, transform, or build upon” it. If you are using the book,
either in teaching a class or for your own learning, I would appreciate your informing me. I retain
copyright in all non-U.S. jurisdictions, but permission to use these materials in teaching is still
granted, provided the licensing information here is displayed.
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Chapter 1

Time Waste Versus Empowerment

I took a course in speed reading, and read War and Peace in 20 minutes. It’s about Russia—
comedian Woody Allen

I learned very early the difference between knowing the name of something and knowing something—
Richard Feynman, Nobel laureate in physics

The main goal [of this course] is self-actualization through the empowerment of claiming your
education—UCSC (and former UCD) professor Marc Mangel, in the syllabus for his calculus course

What does this really mean? Hmm, I've never thought about that—UCD PhD student in statistics,
in answer to a student who asked the actual meaning of a very basic concept

You have a PhD in engineering. You may have forgotten technical details like %sin(t) = cos(t),
but you should at least understand the concepts of rates of change—the author, gently chiding a
friend who was having trouble following a simple quantitative discussion of trends in California’s
educational system

Give me siz hours to chop down a tree and I will spend the first four sharpening the are—Abraham
Lincoln

The field of probability and statistics (which, for convenience, I will refer to simply as “statistics”
below) impacts many aspects of our daily lives—business, medicine, the law, government and so
on. Consider just a few examples:

e The statistical models used on Wall Street made the “quants” (quantitative analysts) rich—
but also contributed to the worldwide financial crash of 2008.

e In a court trial, large sums of money or the freedom of an accused may hinge on whether the
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judge and jury understand some statistical evidence presented by one side or the other.

e Wittingly or unconsciously, you are using probability every time you gamble in a casino—and
every time you buy insurance.

e Statistics is used to determine whether a new medical treatment is safe/effective for you.

e Statistics is used to flag possible terrorists—but sometimes unfairly singling out innocent
people while other times missing ones who really are dangerous.

Clearly, statistics matters. But it only has value when one really understands what it means and
what it does. Indeed, blindly plugging into statistical formulas can be not only valueless but in
fact highly dangerous, say if a bad drug goes onto the market.

Yet most people view statistics as exactly that—mindless plugging into boring formulas. If even
the statistics graduate student quoted above thinks this, how can the students taking the course
be blamed for taking that atititude?

I once had a student who had an unusually good understanding of probability. It turned out that
this was due to his being highly successful at playing online poker, winning lots of cash. No blind
formula-plugging for him! He really had to understand how probability works.

Statistics is not just a bunch of formulas. On the contrary, it can be mathematically deep, for those
who like that kind of thing. (Much of statistics can be viewed as the Pythagorean Theorem in
n-dimensional or even infinite-dimensional space.) But the key point is that anyone who has taken
a calculus course can develop true understanding of statistics, of real practical value. As Professor
Mangel says, that’s empowering.

Statistics is based on probabilistic models. So, in order to become effective at data analysis, one
must really master the principles of probability; this is where Lincoln’s comment about “sharpening
the axe” truly applies.

So as you make your way through this book, always stop to think, “What does this equation really
mean? What is its goal? Why are its ingredients defined in the way they are? Might there be a
better way? How does this relate to our daily lives?” Now THAT is empowering.



Chapter 2

Basic Probability Models

This chapter will introduce the general notions of probability. Most of it will seem intuitive to you,
but pay careful attention to the general principles which are developed; in more complex settings
intuition may not be enough, and the tools discussed here will be very useful.

2.1 ALOHA Network Example

Throughout this book, we will be discussing both “classical” probability examples involving coins,
cards and dice, and also examples involving applications to computer science. The latter will involve
diverse fields such as data mining, machine learning, computer networks, software engineering and
bioinformatics.

In this section, an example from computer networks is presented which will be used at a number
of points in this chapter. Probability analysis is used extensively in the development of new, faster
types of networks.

Today’s Ethernet evolved from an experimental network developed at the University of Hawaii,
called ALOHA. A number of network nodes would occasionally try to use the same radio channel to
communicate with a central computer. The nodes couldn’t hear each other, due to the obstruction
of mountains between them. If only one of them made an attempt to send, it would be successful,
and it would receive an acknowledgement message in response from the central computer. But if
more than one node were to transmit, a collision would occur, garbling all the messages. The
sending nodes would timeout after waiting for an acknowledgement which never came, and try
sending again later. To avoid having too many collisions, nodes would engage in random backoff,
meaning that they would refrain from sending for a while even though they had something to send.

One variation is slotted ALOHA, which divides time into intervals which I will call “epochs.” Each
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epoch will have duration 1.0, so epoch 1 extends from time 0.0 to 1.0, epoch 2 extends from 1.0 to
2.0 and so on. In the version we will consider here, in each epoch, if a node is active, i.e. has a
message to send, it will either send or refrain from sending, with probability p and 1-p. The value
of p is set by the designer of the network. (Real Ethernet hardware does something like this, using
a random number generator inside the chip.)

The other parameter q in our model is the probability that a node which had been inactive generates
a message during an epoch, i.e. the probability that the user hits a key, and thus becomes “active.”
Think of what happens when you are at a computer. You are not typing constantly, and when you
are not typing, the time until you hit a key again will be random. Our parameter q models that
randomness.

Let n be the number of nodes, which we’ll assume for simplicity is two. Assume also for simplicity
that the timing is as follows. Arrival of a new message happens in the middle of an epoch, and the
decision as to whether to send versus back off is made near the end of an epoch, say 90% into the
epoch.

For example, say that at the beginning of the epoch which extends from time 15.0 to 16.0, node A
has something to send but node B does not. At time 15.5, node B will either generate a message
to send or not, with probability q and 1-q, respectively. Suppose B does generate a new message.
At time 15.9, node A will either try to send or refrain, with probability p and 1-p, and node B will
do the same. Suppose A refrains but B sends. Then B’s transmission will be successful, and at the
start of epoch 16 B will be inactive, while node A will still be active. On the other hand, suppose
both A and B try to send at time 15.9; both will fail, and thus both will be active at time 16.0,
and so on.

Be sure to keep in mind that in our simple model here, during the time a node is active, it won’t
generate any additional new messages.

(Note: The definition of this ALOHA model is summarized concisely on page )

Let’s observe the network for two epochs, epoch 1 and epoch 2. Assume that the network consists
of just two nodes, called node 1 and node 2, both of which start out active. Let X; and X5 denote
the numbers of active nodes at the very end of epochs 1 and 2, after possible transmissions. We’ll
take p to be 0.4 and q to be 0.8 in this example.

Let’s find P(X; = 2), the probability that X; = 2, and then get to the main point, which is to ask
what we really mean by this probability.

How could X7 = 2 occur? There are two possibilities:

e both nodes try to send; this has probability p?

e neither node tries to send; this has probability (1 — p)?
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Table 2.1: Sample Space for the Dice Example

Thus

P(X1=2)=p*+ (1 —-p)?=0.52 (2.1)

2.2 The Crucial Notion of a Repeatable Experiment

It’s crucial to understand what that 0.52 figure really means in a practical sense. To this end, let’s
put the ALOHA example aside for a moment, and consider the “experiment” consisting of rolling
two dice, say a blue one and a yellow one. Let X and Y denote the number of dots we get on the
blue and yellow dice, respectively, and consider the meaning of P(X +Y =6) = %.

In the mathematical theory of probability, we talk of a sample space, which (in simple cases)
consists of the possible outcomes (X,Y), seen in Table In a theoretical treatment, we place
weights of 1/36 on each of the points in the space, reflecting the fact that each of the 36 points is
equally likely, and then say, “What we mean by P(X +Y = 6) = 2 is that the outcomes (1,5),
(2,4), (3,3), (4,2), (5,1) have total weight 5/36.”

Unfortunately, the notion of sample space becomes mathematically tricky when developed for more
complex probability models. Indeed, it requires graduate-level math, called measure theory.

And much worse, under the sample space approach, one loses all the intuition. In particular,
there is no good way using set theory to convey the intuition underlying conditional
probability (to be introduced in Section . The same is true for expected value, a central topic
to be introduced in Section [3.5

In any case, most probability computations do not rely on explicitly writing down a sample space.
In this particular example it is useful for us as a vehicle for explaining the concepts, but we will
NOT use it much. Those who wish to get a more theoretical grounding can get a start in Section
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notebook line | outcome \ blue+yellow = 67 ‘
1 blue 2, yellow 6 | No
2 blue 3, yellow 1 | No
3 blue 1, yellow 1 | No
4 blue 4, yellow 2 | Yes
5 blue 1, yellow 1 | No
6 blue 3, yellow 4 | No
7 blue 5, yellow 1 | Yes
8 blue 3, yellow 6 | No
9 blue 2, yellow 5 | No

Table 2.2: Notebook for the Dice Problem

b4l

But the intuitive notion—which is FAR more important—of what P(X +Y = 6) = % means is
the following. Imagine doing the experiment many, many times, recording the results in a large
notebook:

e Roll the dice the first time, and write the outcome on the first line of the notebook.

e Roll the dice the second time, and write the outcome on the second line of the notebook.

Roll the dice the third time, and write the outcome on the third line of the notebook.

Roll the dice the fourth time, and write the outcome on the fourth line of the notebook.

e Imagine you keep doing this, thousands of times, filling thousands of lines in the notebook.

The first 9 lines of the notebook might look like Table Here 2/9 of these lines say Yes. But
after many, many repetitions, approximately 5/36 of the lines will say Yes. For example, after
doing the experiment 720 times, approximately % x 720 = 100 lines will say Yes.

This is what probability really is: In what fraction of the lines does the event of interest happen?
It sounds simple, but if you always think about this “lines in the notebook” idea,
probability problems are a lot easier to solve. And it is the fundamental basis of computer
simulation.
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2.3 Our Definitions

These definitions are intuitive, rather than rigorous math, but intuition is what we need. Keep in
mind that we are making definitions below, not listing properties.

e We assume an “experiment” which is (at least in concept) repeatable. The experiment of
rolling two dice is repeatable, and even the ALOHA experiment is so. (We simply watch the
network for a long time, collecting data on pairs of consecutive epochs in which there are
two active stations at the beginning.) On the other hand, the econometricians, in forecasting
2009, cannot “repeat” 2008. Yet all of the econometricians’ tools assume that events in 2008
were affected by various sorts of randomness, and we think of repeating the experiment in a
conceptual sense.

e We imagine performing the experiment a large number of times, recording the result of each
repetition on a separate line in a notebook.

e We say A is an event for this experiment if it is a possible boolean (i.e. yes-or-no) outcome
of the experiment. In the above example, here are some events:

*X+Y =6
*X =1
*Y =3
*XY =14

e A random variable is a numerical outcome of the experiment, such as X and Y here, as
well as X+Y, 2XY and even sin(XY).

e For any event of interest A, imagine a column on A in the notebook. The k" line in the
notebook, k = 1,2,3,..., will say Yes or No, depending on whether A occurred or not during
the k" repetition of the experiment. For instance, we have such a column in our table above,
for the event {A = blue+yellow = 6}.

e For any event of interest A, we define P(A) to be the long-run fraction of lines with Yes
entries.

e For any events A, B, imagine a new column in our notebook, labeled “A and B.” In each line,
this column will say Yes if and only if there are Yes entries for both A and B. P(A and B) is
then the long-run fraction of lines with Yes entries in the new column labeled “A and B."[l]

Tn most textbooks, what we call “A and B” here is written ANB, indicating the intersection of two sets in the
sample space. But again, we do not take a sample space point of view here.
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e For any events A, B, imagine a new column in our notebook, labeled “A or B.” In each line,
this column will say Yes if and only if at least one of the entries for A and B says YesE]

e For any events A, B, imagine a new column in our notebook, labeled “A | B” and pronounced
“A given B.” In each line:

* This new column will say “NA” (“not applicable”) if the B entry is No.

* If it is a line in which the B column says Yes, then this new column will say Yes or No,
depending on whether the A column says Yes or No.

Think of probabilities in this “notebook” context:

e P(A) means the long-run fraction of lines in the notebook in which the A column says Yes.

e P(A or B) means the long-run fraction of lines in the notebook in which the A-or-B column
says Yes.

e P(A and B) means the long-run fraction of lines in the notebook in which the A-and-B column
says Yes.

e P(A | B) means the long-run fraction of lines in the notebook in which the A | B column says

Yes—among the lines which do NOT say NA.

A hugely common mistake is to confuse P(A and B) and P(A | B). This is where the
notebook view becomes so important. Compare the quantities P(X = 1 and S = 6) = % and
P(X =1|S=6) = £, where S = X+Y{]

e After a large number of repetitions of the experiment, approximately 1/36 of the lines of the
notebook will have the property that both X = 1 and S = 6 (since X = 1 and S = 6 is
equivalent to X = 1 and Y = 5).

e After a large number of repetitions of the experiment, if we look only at the lines in
which S = 6, then among those lines, approximately 1/5 of those lines will show X =
1.
The quantity P(A|B) is called the conditional probability of A, given B.

Note that and has higher logical precedence than or. For example, P(A and B or C) means P[(A
and B) or C]. Also, not has higher precedence than and.

Here are some more very important definitions and properties:

2In the sample space approach, this is written A U B.
3Think of adding an S column to the notebook too
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e Definition 1 Suppose A and B are events such that it is impossible for them to occur in the
same line of the notebook. They are said to be disjoint events.

e If A and B are disjoint events, then

P(Aor B) = P(A) + P(B) (2.2)

Again, this terminology disjoint stems from the set-theoretic sample space approach, where
it means that A N B = ¢. That mathematical terminology works fine for our dice example,
but in my experience people have major difficulty applying it correctly in more complicated
problems. This is another illustration of why I put so much emphasis on the “notebook”

framework.
By writing
{AorBorC}={Aor [BorC|} = (2.3)
can be iterated, e.g.
P(Aor Bor C)=P(A)+ P(B)+ P(C) (2.4)

e If A and B are not disjoint, then

P(Aor B)=P(A)+ P(B) — P(A and B) (2.5)
In the disjoint case, that subtracted term is 0, so (2.5]) reduces to (2.2)).

e Definition 2 Fvents A and B are said to be stochastically independent, usually just
stated as independent E] if

P(A and B) = P(A) - P(B) (2.6)

e In calculating an “and” probability, how does one know whether the events are independent?
The answer is that this will typically be clear from the problem. If we toss the blue and yellow
dice, for instance, it is clear that one die has no impact on the other, so events involving the
blue die are independent of events involving the yellow die. On the other hand, in the ALOHA
example, it’s clear that events involving X; are NOT independent of those involving Xs.

4The term stochastic is just a fancy synonym for random.
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e If A and B are not independent, the equation (2.6 generalizes to

P(A and B) = P(A)P(B|A) (2.7)

This should make sense to you. Suppose 30% of all UC Davis students are in engineering,
and 20% of all engineering majors are female. That would imply that 0.30 x 0.20 = 0.06, i.e.
6% of all UCD students are female engineers.

Note that if A and B actually are independent, then P(B|A) = P(B), and (2.7 reduces to
(2.6).

Note too that (2.7)) implies

P(A and B)

P(BI4) = =5

(2.8)

2.4 “Mailing Tubes”

If I ever need to buy some mailing tubes, I can come here—friend of the author’s, while browsing
through an office supplies store

Examples of the above properties, e.g. (2.6) and (2.7)), will be given starting in Section But
first, a crucial strategic point in learning probability must be addressed.

Some years ago, a friend of mine was in an office supplies store, and he noticed a rack of mailing
tubes. My friend made the remark shown above. Well, (2.6)) and are “mailing tubes”—make a
mental note to yourself saying, “If I ever need to find a probability involving and, one thing I can

try is (26) and (2.7).” Be ready for this!

This mailing tube metaphor will be mentioned often, such as in Section [3.5.5].

2.5 Example: ALOHA Network

Please keep in mind that the notebook idea is simply a vehicle to help you understand what the
concepts really mean. This is crucial for your intuition and your ability to apply this material in
the real world. But the notebook idea is NOT for the purpose of calculating probabilities. Instead,
we use the properties of probability, as seen in the following.

Let’s look at all of this in the ALOHA context. Here’s a summary:
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e We have n network nodes, sharing a common communications channel.

e Time is divided in epochs. X} denotes the number of active nodes at the end of epoch k,
which we will sometimes refer to as the state of the system in epoch k.

e If two or more nodes try to send in an epoch, they collide, and the message doesn’t get
through.

e We say a node is active if it has a message to send.
e If a node is active node near the end of an epoch, it tries to send with probability p.

e If a node is inactive at the beginning of an epoch, then at the middle of the epoch it will
generate a message to send with probability q.

e In our examples here, we have n = 2 and Xy = 2, i.e. both nodes start out active.
Now, in Equation (2.1) we found that

P(X1=2)=p*+ (1 —-p)? =052 (2.9)

How did we get this? Let C; denote the event that node i tries to send, i = 1,2. Then using the
definitions above, our steps would be

P(Xy=2) = P(Ciand Cy or not Cy and not Cy) (2.10)
= P(C; and Cy) + P( not Cy and not C3) (from (2.2)) (2.11)
= P(C1)P(C3) + P( not Cy)P( not Cy) (from ) (2.12)
= p’4+(1—p)? (2.13)

(The underbraces in ([2.10) do not represent some esoteric mathematical operation. There are there
simply to make the grouping clearer, corresponding to events G and H defined below.)

Here are the reasons for these steps:

(2.10): We listed the ways in which the event {X; = 2} could occur.

(2.11): Write G = Cy and Cy, H = Dy and D3, where D; = not C;, i = 1,2. Then the events G and
H are clearly disjoint; if in a given line of our notebook there is a Yes for G, then definitely
there will be a No for H, and vice versa.



12 CHAPTER 2. BASIC PROBABILITY MODELS

(2.12): The two nodes act physically independently of each other. Thus the events Cy and Cy are
stochastically independent, so we applied (2.6)). Then we did the same for D; and Ds.

Now, what about P(Xy = 2)7 Again, we break big events down into small events, in this case
according to the value of X;:

P(Xy=2) = P

(X1 =0and Xo=2o0r X;j =1and Xo=2o0r X; =2 and Xo =2)

(X1 =0and Xy =2) (2.14)
(X1 =1and Xy =2)

(X1 =2and Xy =2)

sl

+
+

g

Since X7 cannot be 0, that first term, P(X; = 0 and X2 = 2) is 0. To deal with the second term,
P(X; =1 and X3 = 2), we'll use . Due to the time-sequential nature of our experiment here,
it is natural (but certainly not “mandated,” as we’ll often see situations to the contrary) to take A
and B to be {X; = 1} and {Xy = 2}, respectively. So, we write

P(X;=1and X9 =2)=P(X; =1)P(Xy=2|X; =1) (2.15)
To calculate P(X; = 1), we use the same kind of reasoning as in Equation (2.1)). For the event in

question to occur, either node A would send and B wouldn’t, or A would refrain from sending and
B would send. Thus

P(X; =1)=2p(1 —p) = 0.48 (2.16)

Now we need to find P(Xy = 2|X; = 1). This again involves breaking big events down into small
ones. If X; =1, then X9 = 2 can occur only if both of the following occur:

e Event A: Whichever node was the one to successfully transmit during epoch 1-—and we are
given that there indeed was one, since X; = 1—now generates a new message.

e Event B: During epoch 2, no successful transmission occurs, i.e. either they both try to send
or neither tries to send.

Recalling the definitions of p and q in Section [2.1 we have that

P(Xo=2|X1=1)=¢q[p*+ (1 —p)? =041 (2.17)
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Thus P(X; =1 and X3 =2) = 0.48 x 0.41 = 0.20.

We go through a similar analysis for P(X; = 2 and Xy = 2): We recall that P(X; = 2) = 0.52
from before, and find that P(X2 = 2|X; = 2) = 0.52 as well. So we find P(X; =2 and X3 = 2) to
be 0.522 = 0.27. Putting all this together, we find that P(Xy = 2) = 0.47.

Let’s do another; let’s find P(X; = 1| X3 = 2). [Pause a minute here to make sure you understand
that this is quite different from P(X3 = 2|X; = 1).] From (2.8]), we know that

P(Xl =1 and X2 = 2)
P(Xy =2)

P(X; =1|X, =2) = (2.18)

We computed both numerator and denominator here before, in Equations (2.15) and (2.14)), so we
see that P(X; = 1|X = 2) = 0.20/0.47 = 0.43.

So, in our notebook view, if we were to look only at lines in the notebook for which Xy = 2, a
fraction 0.43 of those lines would have X7 = 1.

You might be bothered that we are looking “backwards in time” in , kind of guessing the past
from the present. There is nothing wrong or unnatural about that. Jurors in court trials do it all
the time, though presumably not with formal probability calculation. And evolutionary biologists
do use formal probability models to guess the past.

And one more calculation: P(X; = 2 or Xo = 2). From ([2.5),

P(X1 =2 or X2:2):P(X1 :2)+P(X2:2)—P(X1 = 2 and X2:2) (219)
Luckily, we’ve already calculated all three probabilities on the right-hand side to be 0.52, 0.47 and

0.27, respectively. Thus P(X; =2 or Xy =2) =0.72.

Note by the way that events involving X» are NOT independent of those involving X;. For instance,

we found in (2.18)) that
P(X) =1|X; = 2) = 0.43 (2.20)
yet from (2.16) we have

P(X; =1) =0.48. (2.21)
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2.6 Bayes’ Rule

(This section should not be confused with Section The latter is highly controversial, while
the material in this section is not controversial at all.)

Following (2.18) above, we noted that the ingredients had already been computed, in (2.15)) and
(2.14). If we go back to the derivations in those two equations and substitute in ([2.18]), we have

P(X1 =1 and XQ :2)

P(X1=1|Xs=2) — = (2.22)
P(Xl =1 and X2 = 2)
_ (2.23)
P(X1 =1 and X5 :2)+P(X1 =2 and X» :2)
_ P(X, = 1)P(Xs=2|X; = 1) (220

P(X;=1)P(X2=2|X1=1)+ P(X1 =2)P(X2 =2|X; =2)
Looking at this in more generality, for events A and B we would find that

P(A)P(BJA)

P(A|B) = P(A)P(B|A) + P(not A)P(B|not A)

(2.25)

This is known as Bayes’ Theorem or Bayes’ Rule. It can be extended easily to cases with
several terms in the denominator, arising from situations that need to be broken down into several
subevents rather than just A and not-A.

2.7 ALOHA in the Notebook Context

Think of doing the ALOHA “experiment” many, many times.
e Run the network for two epochs, starting with both nodes active, the first time, and write
the outcome on the first line of the notebook.

e Run the network for two epochs, starting with both nodes active, the second time, and write
the outcome on the second line of the notebook.

e Run the network for two epochs, starting with both nodes active, the third time, and write
the outcome on the third line of the notebook.

e Run the network for two epochs, starting with both nodes active, the fourth time, and write
the outcome on the fourth line of the notebook.
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notebook line [ X1 =2 [ X, =2 | X; =2and X, =2 | X, =2|X; =2 |

1 Yes No No No

2 No No No NA
3 Yes Yes Yes Yes
4 Yes No No No

5 Yes Yes Yes Yes
6 No No No NA
7 No Yes No NA

Table 2.3: Top of Notebook for Two-Epoch ALOHA Experiment

e Imagine you keep doing this, thousands of times, filling thousands of lines in the notebook.
The first seven lines of the notebook might look like Table We see that:

e Among those first seven lines in the notebook, 4/7 of them have X; = 2. After many, many
lines, this fraction will be approximately 0.52.

e Among those first seven lines in the notebook, 3/7 of them have Xo = 2. After many, many
lines, this fraction will be approximately O.47E]

e Among those first seven lines in the notebook, 3/7 of them have X; = 2 and Xy = 2. After
many, many lines, this fraction will be approximately 0.27.

e Among the first seven lines in the notebook, four of them do not say NA in the X9 = 2| X; = 2
column. Among these four lines, two say Yes, a fraction of 2/4. After many, many lines,
this fraction will be approximately 0.52.

2.8 A Note on Modeling

Here is a question to test your understanding of the ALOHA model—mnot the calculation of prob-
abilities, but rather the meaning of the model itself. What kinds of properties are we trying to
capture in the model?

So, consider this question:

®Don’t make anything of the fact that these probabilities nearly add up to 1.
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Consider the ALOHA network model. Say we have two such networks, A and B. In A,
the network typically is used for keyboard input, such as a user typing e-mail or editing
a file. But in B, users tend to do a lot of file uploading, not just typing. Fill in the
blanks: In B, the model parameter is than in A, and in order to
accommodate this, we should set the parameter ________ to be relatively __________ in B.

In network B we have heavy traffic. Thus, when a node becomes idle, it is quite likely to have a
new message to send right awayﬁ Thus q is large.

That means we need to be especially worried about collisions, so we probably should set p to a low
value.

2.9 Solution Strategies

The example in Section shows typical stategies in exploring solutions to probability problems,
such as:

e Name what seem to be the important variables and events, in this case X7, Xo, C1, Cy and
SO on.

e Write the given probability in terms of those named variables, e.g.

P(X; =2)=P(Cy and Cy or not C and not Cy) (2.26)

above.

e Ask the famous question, “How can it happen?” Break big events down into small events; in
the above case the event X7 = 2 can happen if C; and C5 or not C7 and not Cs.

e But when you do break things down like this, make sure to neither expand or contract the
scope of the probability. Say you write something like

P(A) = P(B) (2.27)

where B might be some complicated event expression such as in the right-hand side of (2.10)).
Make SURE that A and B are equivalent—meaning that in every notebook line in which A
occurs, then B also occurs, and vice versa.

5The file is likely read in chunks called disk sectors, so there may be a slight pause between the uploading of
chunks. Our model here is too coarse to reflect such things.
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e Do not write/think nonsense. For example: the expression “P(A) or P(B)” is nonsense—do
you see why? Probabilities are numbers, not boolean expressions, so “P(A) or P(B)” is like
saying, “0.2 or 0.5”—meaningless!

Similarly, say we have a random variable X. The “probability” P(X) is invalid. Say X is the
number of dots we get when we roll a single die. Then P(X) would mean “the probability that
the number of dots,” which is nonsense English! P(X = 3) is valid, but P(X) is meaningless.

Please note that = is not like a comma, or equivalent to the English word therefore. It needs
a left side and a right side; “a = b” makes sense, but “= b” doesn’t.

e Similarly, don’t use “formulas” that you didn’t learn and that are in fact false. For example,
in an expression involving a random variable X, one can NOT replace X by its mean. (How
would you like it if your professor were to lose your exam, and then tell you, “Well, I'll just
assign you a score that is equal to the class mean”?)

e Adhere to convention! Use capital letters for random variables and names of events. Use P()
notation, not p() (which will mean something else in this book).

e In the beginning of your learning probability methods, meticulously write down all your steps,
with reasons, as in the computation of P(X; = 2) in Equations (2.10)ff. After you gain more
experience, you can start skipping steps, but not in the initial learning period.

e Solving probability problems—and even more so, building useful probability models—is like
computer programming: It’s a creative process.

One can NOT—repeat, NOT—teach someone how to write programs. All one can do is show
the person how the basic building blocks work, such as loops, if-else and arrays, then show a
number of examples. But the actual writing of a program is a creative act, not formula-based.
The programmer must creatively combined the various building blocks to produce the desired
result. The teacher cannot teach the student how to do this.

The same is true for solving probability problems. The basic building blocks were presented
above in Section 2.5] and many more “mailing tubes” will be presented in the rest of this
book. But it is up to the student to try using the various building blocks in a way that solves
the problem. Sometimes use of one block may prove to be unfruitful, in which case one must
try other blocks.

For instance, in using probability formulas like P(A and B) = P(A) P(BJ|A), there is no magic
rule as to how to choose A and B.

Moreover, if you need P(B|A), there is no magic rule on how to find it. On the one hand,
you might calculate it from , as we did in , but on the other hand you may be able
to reason out the value of P(B[A), as we did following (2.16). Just try some cases until you
find one that works, in the sense that you can evaluate both factors. It’s the same as trying
various programming ideas until you find one that works.
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2.10 Example: Divisibility of Random Integers

Suppose at step 1 we generate a random integer between 1 and 1000, and check whether it’s evenly
divisible by i, i = 5,4,3,2,1. Let N denote the number of steps needed to reach an evenly divisible
number.

Let’s find P(N = 2). Let q(i) denote the fraction of numbers in 1...,1000 that are evenly divisible by
i, so that for instance q(5) = 200/1000 = 1/5 while q(3) = 333/1000. Let’s label the steps 5.4,...,
so that the first step is number 5. Then since the random numbers are independent from step to
step, we have

P(N =2) = P(fail in step 5 and succeed in step 4) (“How can it happen?”) (2.28)
= P(fail in step 5) P(succeed in step 4 | fail in step 5)  ((2.7)) (2.29)
= [1—q(5)]a4) (2.30)
4 1
= —-= 2.31
! (231)
1
= = 2.32
. (2.32)

But there’s more.

First, note that q(i) is either equal or approximately equal to 1/i. Then following the derivation in

([2.28)), you'll find that

(2.33)

for ALL jin 1,...,5.

That may seem counterintuitive. Yet the example here is in essence the same as one found as an
exercise in many textbooks on probability:

A man has five keys. He knows one of them opens a given lock, but he doesn’t know
which. So he tries the keys one at a time until he finds the right one. Find P(N = j), j
= 1,...,5, where N is the number of keys he tries until he succeeds.

Here too the answer is 1/5 for all j. But this one makes intuitive sense: Each of the keys has chance
1/5 of being the right key, so each of the values 1,...,5 is equally likely for N.

This is then an example of the fact that sometimes we can gain insight into one problem by
considering a mathematically equivalent problem in a quite different setting.
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2.11 Example: A Simple Board Game

Consider a board game, which for simplicity we’ll assume consists of two squares per side, on four
sides. A player’s token advances around the board. The squares are numbered 0-7, and play begins
at square 0.

A token advances according to the roll of a single die. If a player lands on square 3, he/she gets
a bonus turn. Let’s find the probability that a player has yet to make a complete circuit of the
board—i.e. has not yet reached or passed 0—after the first turn (including the bonus, if any). Let
R denote his first roll, and let B be his bonus if there is one, with B being set to 0 if there is no
bonus. Then (using commas as a shorthand notation for and)

P(doesn’t reach or pass 0) = P(R+ B <T) (2.34)
= P(R<6,R#3or R=3,B<4) (2.35)
= P(R<6,R#3)+P(R=3,B<4) (2.36)
= P(R<6,R#3)+P(R=3) P(B<4) (2.37)
5 1 4
= 24>.= 2.
5 + 66 (2.38)
17
- ! 2.
13 (2.39)
Now, here’s a shorter way (there are always multiple ways to do a problem):
P(don’t reach or pass 0) = 1 — P(do reach or pass 0) (2.40)
= 1-P(R+B>71) (2.41)
= 1-P(R=3,B>4) (2.42)
1 2
= 1--.= 2.43
56 (2.43)
17
= — 2.44

Now suppose that, according to a telephone report of the game, you hear that on A’s first turn,
his token ended up at square 4. Let’s find the probability that he got there with the aid of a bonus
roll.

Note that this a conditional probability—we’re finding the probability that A got a bonus
roll, given that we know he ended up at square 4. The word given wasn’t there in the statement of
the problem, but it was implied.
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A little thought reveals that we cannot end up at square 4 after making a complete circuit of the
board, which simplifies the situation quite a bit. So, write

P(R+B=4,B>0)

PB>0|R+B=4) = PRI B=1) (2.45)
B P(R+B=4,B>0) (2.46)
~ P(R+B=4,B>00orR+B=4,B=0) ‘
B P(R+B=4,B>0) (2.47)
~ P(R+B=4,B>0)+P(R+B=4,B=0) ‘

P(R=3,B=1)
— 2.48
P(R=3,B=1)+P(R=4) (248)
1 1
= 66 (2.49)
1 1 1
6676
1
- = 2.50
- (2.50)

We could have used Bayes’ Rule to shorten the derivation a little here, but will prefer to derive
everything, at least in this introductory chapter.

Pay special attention to that third equality above, as it is a frequent mode of attack in probability
problems. In considering the probability P(R+B = 4, B > 0), we ask, what is a simpler—but still
equivalent!—description of this event? Well, we see that R+B = 4, B > 0 boils down to R = 3, B
= 1, so we replace the above probability with P(R = 3, B = 1).

Again, this is a very common approach. But be sure to take care that we are in an “if and only if”
situation. Yes, R+B = 4, B > 0 implies R = 3, B = 1, but we must make sure that the converse
is true as well. In other words, we must also confirm that R = 3, B = 1 implies R+B =4, B > 0.
That’s trivial in this case, but one can make a subtle error in some problems if one is not careful;
otherwise we will have replaced a higher-probability event by a lower-probability one.

2.12 Example: Bus Ridership

Consider the following analysis of bus ridership. (In order to keep things easy, it will be quite
oversimplified, but the principles will be clear.) Here is the model:

e At each stop, each passsenger alights from the bus, independently, with probability 0.2 each.

e Either 0, 1 or 2 new passengers get on the bus, with probabilities 0.5, 0.4 and 0.1, respectively.
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e Assume the bus is so large that it never becomes full, so the new passengers can always get
on.

e Suppose the bus is empty when it arrives at its first stop.

Let L; denote the number of passengers on the bus as it leaves its it" stop, i = 1,2,3,... Let B;
denote the number of new passengers who board the bus at the i stop.

First, let’s find the probability that no passengers board the bus at the first three stops. That’s
easy:

P(B; =0 and By = 0 and B3 = 0) = 0.5 (2.51)

Now let’s compute P(Ly = 0).

P(LQZO) = P(31:OandngOorBlzlandL2:0or31:2andL2:0) (252)
2
= Y P(By=iand Ly =0) (2.53)
=0
2
= Y P(By =i)P(Ly =0|B, = i) (2.54)
=0
= 0.52 4+ (0.4)(0.2)(0.5) + (0.1)(0.22)(0.5) (2.55)
= 0.292 (2.56)

For instance, where did that first term, 0.52, come from? Well, P(B; = 0) = 0.5, and what about
P(Ly = 0|By = 0)? If By = 0, then the bus approaches the second stop empty. For it to then
leave that second stop empty, it must be the case that Bs = 0, which has probability 0.5. In other
words, P(Ls = 0|B; = 0) = 0.5.

As another example, suppose we are told that the bus arrives empty at the third stop. What is the
probability that exactly two people boarded the bus at the first stop?

Note first what is being asked for here: P(B; = 2|L2 = 0). Then we have

P(B; =2 and Ly =0)
P(Ly =0)
P(B;=2) P(Ly=0| By =2) / 0.292 (2.58)
0.1-0.2%-0.5/0.292 (2.59)

P(By =2 Ly=0)
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(the 0.292 had been previously calculated in (2.56])).

Now let’s find the probability that fewer people board at the second stop than at the first:

P(By < By) = P(By=1and By < By or By =2 and By < By) (2.60)
= 0.4-0.5+0.1-(0.5+0.4) (2.61)

Also: Someone tells you that as she got off the bus at the second stop, she saw that the bus then
left that stop empty. Let’s find the probability that she was the only passenger when the bus left
the first stop:

We are given that Ly = 0. But we are also given that L; > 0. Then

P(Li=1and Ly =0
P(Li=1|Ly=0and L, >0) = PEL;:OandL?>O§ (2.62)

B P(By=1and Ly =0) (2.63)
~ P(By=1land Ly =0o0r B; =2 and Ly = 0) '

_ (0.4)(0.2)(0.5)
~(0.4)(0.2)(0.5) + (0.1)(0.2)2(0.5) (2.64)

Equation ([2.63]) requires some explanation. Let’s first consider how we got the numerator from the
preceding equation.

Ask the usual question: How can it happen? In this case, how can the event

Ll =1 and L2 =0 (265)

occur? Since we know a lot about the probabilistic behavior of the B;, let’s try to recast that event.
A little thought shows that the event is equivalent to the event

Bl =0 and L2 =0 (266)

So, how did the denominator in (2.63|) come from the preceding equation? In other words, how did
we recast the event

Ly=0and L; >0 (2.67)
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in terms of the B;? Well, L1 > 0 means that By is either 1 or 2. Thus we broke things down
accordingly in the denominator of (2.63).

The remainder of the computation is similar to what we did earlier in this example.

2.13 Random Graph Models

A graph consists of vertices and edges. To understand this, think of a social network. Here the
vertices represent people and the edges represent friendships. For the time being, assume that
friendship relations are mutual, i.e. if person i says he is friends with person j, then j will say the
same about i.

For any graph, its adjacency matriz consists of 1 and 0 entries, with a 1 in row i, column j meaning
there is an edge from vertex i to vertex j. For instance, say we have a simple tiny network of three
people, with adjacency matrix

01 1
100 (2.68)
100

Row 1 of the matrix says that Person 1 is friends with persons 2 and 3, but we see from the other
rows that Persons 2 and 3 are not friends with each other.

In any graph, the degree of a vertex is its number of edges. So, the degree of vertex i is the number
of 1s in row i. In the little model above, vertex 1 has degree 2 but the other two vertices each have
degree 1.

The assumption that friendships are mutual is described in graph theory as having a undirected
graph. Note that that implies that the adjacency matrix is symmetric. However, we might model
some other networks as directed, with adjacency matrices that are not necessarily symmetric. In a
large extended family, for example, we could define edges in terms of being an elder sibling; there
would be an edge from Person i to Person j if j is an older sibling of i.

Graphs need not represent people. They are used in myriad other settings, such as analysis of Web
site relations, Internet traffic routing, genetics research and so on.

2.13.1 Example: Preferential Attachment Graph Model

A famous graph model is Preferential Attachment. Think of it again as an undirected social network,
with each edge representing a “friend” relation. The number of vertices grows over time, one vertex
per time step. At time 0, we have just two vertices, v1 and vo, with a link between them.
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Thus at time 0, each of the two vertices has degree 1. Whenever a new vertex is added to the
graph, it randomly chooses an existing vertex to attach to, creating a new edge with that existing
vertex. In making that random choice, it follows probabilities in proportion to the degrees of the
existing edges.

As an example of how the Preferential Attachment Model works, suppose that at time 2, when vy
is added, the adjacency matrix for the graph is (2.68). Then there will be an edge created between
vg with v1, ve or vs, with probability 2/4, 1/4 and 1/4, respectively. Let’s find P(v, attaches to vy)

Let N; denote the node that v; attaches to, i = 3,4,... Then, following the solution strategy “break
big event down into small events,” let’s break this question about v4 according to what happens
with vs:

P<N4:1) = P(Ngzland N4:1) +P(N3:QandN4:1) (269)
= (1/2)(2/4) + (1/2)(1/4) (2.70)
= 3/8 (2.71)

2.14 Simulation

To simulate whether a simple event occurs or not, we typically use R function runif(). This
function generates random numbers from the interval (0,1), with all the points inside being equally
likely. So for instance the probability that the function returns a value in (0,0.5) is 0.5. Thus here
is code to simulate tossing a coin:

if (runif(1) < 0.5) heads <- TRUE else heads <- FALSE

The argument 1 means we wish to generate just one random number from the interval (0,1).

2.14.1 Example: Rolling Dice

If we roll three dice, what is the probability that their total is 87 We count all the possibilities, or
we could get an approximate answer via simulation:

# roll d dice; find P(total = k)

# simulate roll of one die; the possible return values are 1,2,3,4,5,6,
# all equally likely
roll <- function() return(sample(1:6,1))
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probtotk <- function(d,k,nreps) {

count <- 0

# do the experiment nreps times

for (rep in 1:nreps) {
sum <- 0
# roll d dice and find their sum
for (j in 1:d) sum <- sum + roll()
if (sum == k) count <- count + 1

}

return(count/nreps)

The call to the built-in R function sample() here says to take a sample of size 1 from the sequence
of numbers 1,2,3,4,5,6. That’s just what we want to simulate the rolling of a die. The code

for (j in 1:d) sum <- sum + roll()

then simulates the tossing of a die d times, and computing the sum.

2.14.2 First Improvement

Since applications of R often use large amounts of computer time, good R programmers are always
looking for ways to speed things up. Here is an alternate version of the above program:

# roll d dice; find P(total = k)

probtotk <- function(d,k,nreps) {

count <- 0

# do the experiment nreps times

for (rep in 1:nreps)
total <- sum(sample(1:6,d,replace=TRUE))
if (total == k) count <- count + 1

}

return(count/nreps)

}

Let’s first discuss the code.

sample(1:6,d,replace=TRUE)

The call to sample() here says, “Generate d random numbers, chosen randomly (i.e. with equal
probability) from the integers 1 through 6, with replacement.” Well, of course, that simulates
tossing the die d times. So, that call returns a d-element array, and we then call R’s built-in
function sum() to find the total of the d dice.
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Note the call to R’s sum() function, a nice convenience.

This second version of the code here eliminates one explicit loop, which is the key to writing fast
code in R. But just as important, it is more compact and clearer in expressing what we are doing
in this simulation.

2.14.3 Second Improvement

Further improvements are possible. Consider this code:

# roll d dice; find P(total = k)

# simulate roll of nd dice; the possible return values are 1,2,3,4,5,6,
# all equally likely
roll <- function(nd) return(sample(1:6,nd,replace=TRUE))

probtotk <- function(d,k,nreps) {
sums <- vector(length=nreps)
# do the experiment nreps times
for (rep in 1:nreps) sums[rep] <- sum(roll(d))
return(mean (sums==k))

There is quite a bit going on here.

We are storing the various “notebook lines” in a vector sums. We first call vector() to allocate
space for it.

But the heart of the above code is the expression sums==Kk, which involves the very essence of
the R idiom, vectorization. At first, the expression looks odd, in that we are comparing a vector
(remember, this is what languages like C call an array), sums, to a scalar, k. But in R, every
“scalar” is actually considered a one-element vector.

Fine, k is a vector, but wait! It has a different length than sums, so how can we compare the two
vectors? Well, in R a vector is recycled—extended in length, by repeating its values—in order to
conform to longer vectors it will be involved with. For instance:

> ¢c(2,5) + 4:6
[1] 6 10 8

Here we added the vector (2,5) to (4,5,6). The former was first recycled to (2,5,2), resulting in a
sum of (6,10,8)[]

"There was also a warning message, not shown here. The circumstances under which warnings are or are not
generated are beyond our scope here, but recycling is a very common R operation.
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So, in evaluating the expression sums==k, R will recycle k to a vector consisting of nreps copies
of k, thus conforming to the length of sums. The result of the comparison will then be a vector
of length nreps, consisting of TRUE and FALSE values. In numerical contexts, these are treated
at 1s and Os, respectively. R’s mean() function will then average those values, resulting in the
fraction of 1s! That’s exactly what we want.

Even better:

roll <- function(nd) return(sample(1:6,nd,replace=TRUE))

probtotk <- function(d,k,nreps) {
# do the experiment nreps times
sums <- replicate(nreps,sum(roll(d)))
return(mean (sums==k))

}

R’s replicate() function does what its name implies, in this case executing the call sum(roll(d)).
That produces a vector, which we then assign to sums. And note that we don’t have to allocate
space for sums; replicate() produces a vector, allocating space, and then we merely point sums
to that vector.

The various improvements shown above compactify the code, and in many cases, make it much
fasterﬁ Note, though, that this comes at the expense of using more memory.

2.14.3.1 Simulation of Conditional Probability in Dice Problem

Suppose three fair dice are rolled. We wish to find the approximate probability that the first die
shows fewer than 3 dots, given that the total number of dots for the 3 dice is more than 8, using
simulation.

Here is the code:

dicesim <— function(nreps) {
countl <— 0
count2 <— 0
for (i in 1l:nreps) {
d <— sample(1:6,3 ,replace=T)
if (sum(d) > 8) {
countl <— countl + 1
if (d[1] < 3) count2 <— count2 + 1

}

8You can measure times using R’s system.time() function, e.g. via the call sys-
tem.time(probtotk(3,7,10000)).
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}

return(count2 / countl)

Note carefully that we did NOT use (2.8). That would defeat the purpose of simulation, which is
the model the actual process.

2.14.4 Simulation of the ALOHA Example

Following is a computation via simulation of the approzimate values of P(X; = 2), P(X3 = 2) and
P(Xy=2|X;=1).

# finds P(X1 = 2), P(X2 = 2) and P(X2 = 2|X1 = 1) in ALOHA example
sim <- function(p,q,nreps) {
countx2eq2 <- 0
countxleql <- 0
countxleq2 <- 0
countx2eq2givxleql <- 0
# simulate nreps repetitions of the experiment
for (i in 1:nreps) {
numsend <- 0 # no messages sent so far
# simulate A and B’s decision on whether to send in epoch 1
for (j in 1:2)
if (runif(1) < p) numsend <- numsend + 1
if (numsend == 1) X1 <- 1
else X1 <- 2
if (X1 == 2) countxleq2 <- countxleq2 + 1
# now simulate epoch 2
# if X1 = 1 then one node may generate a new message
numactive <- X1

if (X1 == 1 && runif(1) < q) numactive <- numactive + 1
# send?
if (numactive == 1)

if (runif(1) < p) X2 <- 0
else X2 <- 1
else { # numactive = 2
numsend <- 0
for (i in 1:2)
if (runif(1) < p) numsend <- numsend + 1

if (numsend == 1) X2 <- 1

else X2 <- 2

if (X2 == 2) countx2eq2 <- countx2eq2 + 1
if (X1 == 1) { # do tally for the cond. prob.
countxleql <- countxleql + 1
if (X2 == 2) countx2eq2givxleql <- countx2eq2givxleql + 1
}
}
# print results
cat("P(X1 = 2):",countxleq2/nreps,"\n")
cat("P(X2 = 2):",countx2eq2/nreps,"\n")
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cat("P(X2 = 2 | X1 = 1):",countx2eq2givxleql/countxleql,"\n")
}

Note that each of the nreps iterations of the main for loop is analogous to one line in our hy-
pothetical notebook. So, to find (the approximate value of) P(X; = 2), divide the count of the
number of times X1 = 2 occurred by the number of iterations.

Again, note especially that the way we calculated P(Xy = 2|X; = 1) was to count the number of
times Xy = 2, among those times that X; = 1, just like in the notebook case.

Also: Keep in mind that we did NOT use or any other formula in our simulation. We
stuck to basics, the “notebook” definition of probability. This is really important if you are using
simulation to confirm something you derived mathematically. On the other hand, if you are using
simulation because you CAN’T derive something mathematically (the usual situation), using some
of the mailing tubes might speed up the computation.

2.14.5 Example: Bus Ridership, cont’d.

Consider the example in Section Let’s find the probability that after visiting the tenth stop,
the bus is empty. This is too complicated to solve analytically, but can easily be simulated:

nreps <- 10000
nstops <- 10
count <- 0
for (i in 1:nreps) {
passengers <- 0
for (j in 1:mstops) {
if (passengers > 0)
for (k in 1:passengers)
if (runif(1) < 0.2)
passengers <- passengers - 1
newpass <- sample(0:2,1,prob=c(0.5,0.4,0.1))
passengers <- passengers + newpass
}
if (passengers == 0) count <- count + 1
}

print (count/nreps)

Note the different usage of the sample() function in the call

sample(0:2,1,prob=c(0.5,0.4,0.1))

Here we take a sample of size 1 from the set {0,1,2}, but with probabilities 0.5 and so on. Since
the third argument for sample() is replace, not prob, we need to specify the latter in our call.
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2.14.6 Back to the Board Game Example

Recall the board game in Section Below is simulation code to find the probability in (2.45)):

boardsim <- function(nreps) {
count4 <- 0
countbonusgiven4 <- 0
for (i in 1:nreps) {
position <- sample(1:6,1)
if (position == 3) {
bonus <- TRUE
position <- (position + sample(1:6,1)) %% 8
} else bonus <- FALSE
if (position == 4) {
count4 <- count4 + 1
if (bonus) countbonusgiven4 <- countbonusgiven4 + 1
}
}

return(countbonusgivend/count4)

2.14.7 How Long Should We Run the Simulation?

Clearly, the large the value of nreps in our examples above, the more accurate our simulation
results are likely to be. But how large should this value be? Or, more to the point, what measure is
there for the degree of accuracy one can expect (whatever that means) for a given value of nreps?
These questions will be addressed in Chapter

2.15 Combinatorics-Based Probability Computation

And though the holes were rather small, they had to count them all—from the Beatles song, A Day
in the Life

In some probability problems all the outcomes are equally likely. The probability computation is
then simply a matter of counting all the outcomes of interest and dividing by the total number of
possible outcomes. Of course, sometimes even such counting can be challenging, but it is simple in
principle. We’ll discuss two examples here.

2.15.1 Which Is More Likely in Five Cards, One King or Two Hearts?

Suppose we deal a 5-card hand from a regular 52-card deck. Which is larger, P(1 king) or P(2
hearts)? Before continuing, take a moment to guess which one is more likely.
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Now, here is how we can compute the probabilities. The key point is that all possible hands
are equally likely, which implies that all we need to do is count them. There are (552)
possible hands, so this is our denominator. For P(1 king), our numerator will be the number of
hands consisting of one king and four non-kings. Since there are four kings in the deck, the number
of ways to choose one king is (le) = 4. There are 48 non-kings in the deck, so there are (448) ways
to choose them. Every choice of one king can be combined with every choice of four non-kings, so

the number of hands consisting of one king and four non-kings is 4 - (448). Thus

(48
P(1 king) = 4(5(231)
5

=0.299 (2.72)

The same reasoning gives us

P(2 hearts) = M =0.274 (2.73)

So, the 1-king hand is just slightly more likely.

Note that an unstated assumption here was that all 5-card hands are equally likely. That s a
realistic assumption, but it’s important to understand that it plays a key role here.

By the way, I used the R function choose() to evaluate these quantities, running R in interactive
mode, e.g.:

> choose(13,2) * choose(39,3) / choose(52,5)
[1] 0.2742797

R also has a very nice function combn() which will generate all the (}) combinations of k things
chosen from n, and also will at your option call a user-specified function on each combination. This
allows you to save a lot of computational work. See the examples in R’s online documentation.

Here’s how we could do the 1-king problem via simulation:

# use simulation to find P(1 king) when deal a 5-card hand from a
# standard deck

# think of the 52 cards as being labeled 1-52, with the 4 kings having
# numbers 1-4

sim <- function(areps) {
countlking <- 0 # count of number of hands with 1 king
for (rep in 1:nreps) {
hand <- sample(1:52,5,replace=FALSE) # deal hand
kings <- intersect(1:4,hand) # find which kings, if any, are in hand
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if (length(kings) == 1) countlking <- countlking + 1
}
print (countlking/nreps)
}

Here the intersect() function performs set intersection, in this case the set 1,2,3.4 and the one in
the variable hand. Applying the length() function then gets us number of kings.

2.15.2 Example: Random Groups of Students

A class has 68 students, 48 of which are CS majors. The 68 students will be randomly assigned to
groups of 4. Find the probability that a random group of 4 has exactly 2 CS majors.

2.15.3 Example: Lottery Tickets
Twenty tickets are sold in a lottery, numbered 1 to 20, inclusive. Five tickets are drawn for prizes.
Let’s find the probability that two of the five winning tickets are even-numbered.

Since there are 10 even-numbered tickets, there are (120) sets of two such tickets. Continuing along
these lines, we find the desired probability to be.

(2.74)

Now let’s find the probability that two of the five winning tickets are in the range 1 to 5, two are
in 6 to 10, and one is in 11 to 20.

Picture yourself picking your tickets. Again there are (250) ways to choose the five tickets. How
many of those ways satisfy the stated condition?

Well, first, there are (g) ways to choose two tickets from the range 1 to 5. Once you’ve done
that, there are (g) ways to choose two tickets from the range 6 to 10, and so on. So, The desired
probability is then

GEE) (2.75)
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2.15.4 “Association Rules” in Data Mining

The field of data mining is a branch of computer science, but it is largely an application of various
statistical methods to really huge databases.

One of the applications of data mining is called the market basket problem. Here the data consists
of records of sales transactions, say of books at Amazon.com. The business’ goal is exemplified
by Amazon’s suggestion to customers that “Patrons who bought this book also tended to buy
the following books.”ﬂ The goal of the market basket problem is to sift through sales transaction
records to produce association rules, patterns in which sales of some combinations of books imply
likely sales of other related books.

The notation for association rules is A, B = C, D, E, meaning in the book sales example that
customers who bought books A and B also tended to buy books C, D and E. Here A and B are
called the antecedents of the rule, and C, D and E are called the consequents. Let’s suppose
here that we are only interested in rules with a single consequent.

We will present some methods for finding good rules in another chapter, but for now, let’s look
at how many possible rules there are. Obviously, it would be impractical to use rules with a large
number of antecedentsm Suppose the business has a total of 20 products available for sale. What
percentage of potential rules have three or fewer antecedentsﬂ

For each k = 1,...,19, there are (Qko) possible sets of k antecedents, and for each such set there are
(2071'@

1 ) possible consequents. The fraction of potential rules using three or fewer antecedents is then

Sk () - (rF) _ 23180

]169:1 (2}3) ] (20;’?) 10485740

= 0.0022 (2.76)

So, this is just scratching the surface. And note that with only 20 products, there are already over
ten million possible rules. With 50 products, this number is 2.81 x 106! Imagine what happens in
a case like Amazon, with millions of products. These staggering numbers show what a tremendous
challenge data miners face.

9Some customers appreciate such tips, while others view it as insulting or an invasion of privacy, but we’ll not
address such issues here.

10T addition, there are serious statistical problems that would arise, to be discussed in another chapter.

1Be sure to note that this is also a probability, namely the probability that a randomly chosen rule will have three
or fewer antecedents.
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2.15.5 Multinomial Coefficients

Question: We have a group consisting of 6 Democrats, 5 Republicans and 2 Independents, who
will participate in a panel discussion. They will be sitting at a long table. How many seating
arrangements are possible, with regard to political affiliation? (So we do not care, for instance,
about permuting the individual Democrats within the seats assigned to Democrats.)

Well, there are (163) ways to choose the Democratic seats. Once those are chosen, there are (g) ways
to choose the Republican seats. The Independent seats are then already determined, i.e. there will
be only way at that point, but let’s write it as (3) Thus the total number of seating arrangements

1S

13! 7! 2!
7l 5121 201 277)
That reduces to
13!
6!5!12! (2.78)

The same reasoning yields the following:

Multinomial Coefficients: Suppose we have ¢ objects and r bins. Then the number of ways to
choose ¢ of them to put in bin 1, ¢o of them to put in bin 2,..., and ¢, of them to put in bin r is

c!
W, cl1+..+c¢c =c (279)

Of course, the “bins” may just be metaphorical. In the political party example above, the “bins ”
were political parties, and “objects” were seats.

2.15.6 Example: Probability of Getting Four Aces in a Bridge Hand

A standard deck of 52 cards is dealt to four players, 13 cards each. One of the players is Millie.
What is the probability that Millie is dealt all four aces?

Well, there are

52!

13113113113! (2.80)
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possible deals. (the “objects” are the 52 cards, and the “bins” are the 4 players.) The number of
deals in which Millie holds all four aces is the same as the number of deals of 48 cards, 9 of which
go to Millie and 13 each to the other three players, i.e.

48!

_ 2.81
13113!13!9! (281)
Thus the desired probability is
48!
113113!19!
SS9 — 0.00264 (2.82)
13113113113

Exercises

1. This problem concerns the ALOHA network model of Section Feel free to use (but cite)
computations already in the example.

(a) P(X; =2 and Xo =1), for the same values of p and ¢ in the examples.
(b) Find P(X5 = 0).

(¢) Find (P(X; = 1| X5 = 1).

2. Urn I contains three blue marbles and three yellow ones, while Urn II contains five and seven
of these colors. We draw a marble at random from Urn I and place it in Urn II. We then draw a
marble at random from Urn II.

(a) Find P(second marble drawn is blue).

(b) Find P( first marble drawn is blue | second marble drawn is blue).

3. Consider the example of association rules in Section How many two-antecedent, two-
consequent rules are possible from 20 items? Express your answer in terms of combinatorial (“n
choose k") symbols.

4. Suppose 20% of all C+-+ programs have at least one major bug. Out of five programs, what is
the probability that exactly two of them have a major bug?

5. Assume the ALOHA network model as in Section 2.1} i.e. m = 2 and Xy = 2, but with general
values for p and q. Find the probability that a new message is created during epoch 2.
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6. You bought three tickets in a lottery, for which 60 tickets were sold in all. There will be five
prizes given. Find the probability that you win at least one prize, and the probability that you win
exactly one prize.

7. Two five-person committees are to be formed from your group of 20 people. In order to foster
communication, we set a requirement that the two committees have the same chair but no other
overlap. Find the probability that you and your friend are both chosen for some committee.

8. Consider a device that lasts either one, two or three months, with probabilities 0.1, 0.7 and 0.2,
respectively. We carry one spare. Find the probability that we have some device still working just
before four months have elapsed.

9. A building has six floors, and is served by two freight elevators, named Mike and Ike. The
destination floor of any order of freight is equally likely to be any of floors 2 through 6. Once an
elevator reaches any of these floors, it stays there until summoned. When an order arrives to the
building, whichever elevator is currently closer to floor 1 will be summoned, with elevator Ike being
the one summoned in the case in which they are both on the same floor.

Find the probability that after the summons, elevator Mike is on floor 3. Assume that only one
order of freight can fit in an elevator at a time. Also, suppose the average time between arrivals of
freight to the building is much larger than the time for an elevator to travel between the bottom
and top floors; this assumption allows us to neglect travel time.

10. Without resorting to using the fact that (}) = n!/[k!(n — k!)], find c and d such that

n n—1 c
= 2.
()= (")) 28
11. Consider the ALOHA example from the text, for general p and ¢, and suppose that Xy = 0,
i.e. there are no active nodes at the beginning of our observation period. Find P(X; = 0).

12. Consider a three-sided die, as opposed to the standard six-sided type. The die is cylinder-
shaped, and gives equal probabilities to one, two and three dots. The game is to keep rolling the
die until we get a total of at least 3. Let N denote the number of times we roll the die. For example,
if we get a 3 on the first roll, N = 1. If we get a 2 on the first roll, then N will be 2 no matter what
we get the second time. The largest N can be is 3. The rule is that one wins if one’s final total is
exactly 3.

(a) Find the probability of winning.
(b) Find P(our first roll was a 1 | we won).

(¢) How could we construct such a die?
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13. Consider the ALOHA simulation example in Section [2.14.4

(a) Suppose we wish to find P(Xy = 1|X; = 1) instead of P(Xo = 2|X; = 1). What line(s)
would we change, and how would we change them?

(b) In which line(s) are we in essence checking for a collision?

14. Jack and Jill keep rolling a four-sided and a three-sided die, respectively. The first player to
get the face having just one dot wins, except that if they both get a 1, it’s a tie, and play continues.
Let N denote the number of turns needed. Find the following;:

(a) P(N = 1), P(N = 2).

(b) P(the first turn resulted in a tie|N = 2)

15. In the ALOHA network example in Sec. 1.1, suppose Xy = 1, i.e. we start out with just one
active node. Find P(X2 = 0), as an expression in p and q.

16. Suppose a box contains two pennies, three nickels and five dimes. During transport, two coins
fall out, unseen by the bearer. Assume each type of coin is equally likely to fall out. Find: P(at
least $0.10 worth of money is lost); P(both lost coins are of the same denomination)

17. Suppose we have the track record of a certain weather forecaster. Of the days for which he
predicts rain, a fraction c¢ actually do have rain. Among days for which he predicts no rain, he is
correct a fraction d of the time. Among all days, he predicts rain g of the time, and predicts no
rain 1-g of the time. Find P(he predicted rain | it does rain), P(he predicts wrong) and P(it does
rain — he was wrong). Write R simulation code to verify. (Partial answer: For the case ¢ = 0.8, d
= 0.6 and g = 0.2, P(he predicted rain | it does rain) = 1/3.)

18. The Game of Pit is really fun because there are no turns. People shout out bids at random,
chaotically. Here is a slightly simplified version of the game:

There are four suits, Wheat, Barley, Corn and Rye, with nine cards each, 36 cards in all. There
are four players. At the opening, the cards are all dealt out, nine to each player. The players hide
their cards from each other’s sight.

Players then start trading. In computer science terms, trading is asynchronous, no turns; a player
can bid at any time. The only rule is that a trade must be homogeneous in suit, e.g. all Rye.
(The player trading Rye need not trade all the Rye he has, though.) The player bids by shouting
out the number she wants to trade, say “2!” If another player wants to trade two cards (again,
homogeneous in suit), she yells out, “OK, 2!” and they trade. When one player acquires all nine
of a suit, he shouts “Corner!”
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Consider the situation at the time the cards have just been dealt. Imagine that you are one of the
players, and Jane is another. Find the following probabilities:

you have no Wheats).

P
P(you have seven Wheats).

P(Jane has two Wheats — you have seven Wheats).
P

you have a corner) (note: someone else might too; whoever shouts it out first wins).

19. In the board game example in Section [2.11] suppose that the telephone report is that A ended
up at square 1 after his first turn. Find the probability that he got a bonus.

20. Consider the bus ridership example in Section of the text. Suppose the bus is initially
empty, and let X,, denote the number of passengers on the bus just after it has left the n* stop, n
= 1,2,... Find the following:

(a) P(X2=1)

(b) P(at least one person boarded the bus at the first stop | X2 = 1)

21. Suppose committees of sizes 3, 4 and 5 are to be chosen at random from 20 people, among
whom are persons A and B. Find the probability that A and B are on the same committee.

22. Consider the ALOHA simulation in Section 28]

(a) On what line do we simulate the possible creation of a new message?

(b) Change line 10 so that it uses sample() instead of runif().



Chapter 3

Discrete Random Variables

This chapter will introduce entities called discrete random variables. Some properties will be derived
for means of such variables, with most of these properties actually holding for random variables in
general. Well, all of that seems abstract to you at this point, so let’s get started.

3.1 Random Variables

Definition 3 A random variable is a numerical outcome of our experiment.

For instance, consider our old example in which we roll two dice, with X and Y denoting the number
of dots we get on the blue and yellow dice, respectively. Then X and Y are random variables, as
they are numerical outcomes of the experiment. Moreover, X+Y, 2XY, sin(XY) and so on are also
random variables.

In a more mathematical formulation, with a formal sample space defined, a random variable would
be defined to be a real-valued function whose domain is the sample space.

3.2 Discrete Random Variables

In our dice example, the random variable X could take on six values in the set {1,2,3,4,5,6}. We
say that the support of X is {1,2,3,4,5,6}. This is a finite set.

In the ALOHA example, X; and X» each have support {0,1,2}, again a finite setﬂ

We could even say that X; takes on only values in the set {1,2}, but if we were to look at many epochs rather
than just two, it would be easier not to make an exceptional case.

39
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Now think of another experiment, in which we toss a coin until we get heads. Let N be the number
of tosses needed. Then the support of N is the set {1,2,3,...} This is a countably infinite SetE]

Now think of one more experiment, in which we throw a dart at the interval (0,1), and assume
that the place that is hit, R, can take on any of the values between 0 and 1. Here the support is
an uncountably infinite set.

We say that X, X7, X3 and N are discrete random variables, while R is continuous. We’ll discuss
continuous random variables in a later chapter.

3.3 Independent Random Variables

We already have a definition for the independence of events; what about independence of random
variables? Here it is:

Random variables X and Y are said to be independent if for any sets I and J, the
events {X is in I} and {Y is in J} are independent, i.e. P(X isin I and Y is in J) =
PXisinI) P(Y isin J).

Sounds innocuous, but the notion of independent random variables is absolutely central to the field
of probability and statistics, and will pervade this entire book.

3.4 Example: The Monty Hall Problem

This is an example of how the use of random variables in “translating” a probability problem
to mathematical terms can simplify and clarify one’s thinking. Imagine, this simple device of
introducing named random variables into our analysis makes a problem that has vexed
famous mathematicians quite easy to solve!

The Monty Hall Problem, which gets its name from a popular TV game show host, involves a
contestant choosing one of three doors. Behind one door is a new automobile, while the other two
doors lead to goats. The contestant chooses a door and receives the prize behind the door.

The host knows which door leads to the car. To make things interesting, after the contestant
chooses, the host will reveal that one of the other doors not chosen leads to a goat. Should the

2This is a concept from the fundamental theory of mathematics. Roughly speaking, it means that the set can
be assigned an integer labeling, i.e. item number 1, item number 2 and so on. The set of positive even numbers is
countable, as we can say 2 is item number 1, 4 is item number 2 and so on. It can be shown that even the set of all
rational numbers is countable.
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contestant now change her choice to the remaining door, i.e. the one that she didn’t choose and
the host didn’t open?

Many people answer No, reasoning that the two doors not opened yet each have probability 1/2 of
leading to the car. But the correct answer is actually that the remaining door has probability 2/3,
and thus the contestant should switch to it. Let’s see why.

Let

e C = contestant’s choice of door (1, 2 or 3)
e H = host’s choice of door (1, 2 or 3)

e A = door that leads to the automobile

We can make things more concrete by considering the case C' = 1, H = 2. The mathematical
formulation of the problem is then to find

P(A=3,C=1, H=2)

P(A=3|C=1 H=2)= =1 T3

(3.1)

The key point, commonly missed even by mathematically sophisticated people, is the role of the
host. Write the numerator above as

P(A=3, C=1)PH=2|A=3, C=1) (3.2)

Since C' and A are independent random variables, the value of the first factor in (3.2)) is

(3.3)

1
9

W =
W=

What about the second factor? Remember, the host knows that A = 3, and since the contestant
has chosen door 1, the host will open the only remaining door that conceals a goat, i.e. door 2. In
other words,

PH=2|A=3 C=1)=1 (3.4)
On the other hand, if say A = 1, the host would randomly choose between doors 2 and 3, so that

P(H:Q!A:l,(]:l):% (3.5)
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It is left to the reader to complete the analysis, showing in the end that

2
P(A=3|C=1 H=2)= (3.6)

According to the “Monty Hall problem” entry in Wikipedia, even Paul Erdds, one of the most
famous mathematicians in history, gave the wrong answer to this problem. Presumably he would
have avoided this by writing out his analysis in terms of random variables, as above, rather than
say, a wordy, imprecise and ultimately wrong solution.

3.5 Expected Value

3.5.1 Generality—Not Just for Discrete Random Variables

The concepts and properties introduced in this section form the very core of probability and statis-
tics. Except for some specific calculations, these apply to both discrete and continuous
random variables.

The properties developed for variance, defined later in this chapter, also hold for both discrete and
continuous random variables.

3.5.1.1 What Is It?

The term “expected value” is one of the many misnomers one encounters in tech circles. The
expected value is actually not something we “expect” to occur. On the contrary, it’s often pretty
unlikely.

For instance, let H denote the number of heads we get in tossing a coin 1000 times. The expected
value, you'll see later, is 500. This is not surprising, given the symmetry of the situation, but P(H
= 500) turns out to be about 0.025. In other words, we certainly should not “expect” H to be 500.

Of course, even worse is the example of the number of dots that come up when we roll a fair die.
The expected value is 3.5, a value which not only rarely comes up, but in fact never does.

In spite of being misnamed, expected value plays an absolutely central role in probability and
statistics.
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3.5.2 Definition

Consider a repeatable experiment with random variable X. We say that the expected value of X
is the long-run average value of X, as we repeat the experiment indefinitely.

In our notebook, there will be a column for X. Let X; denote the value of X in the i** row of the
notebook. Then the long-run average of X is

lim ——

n—00 n

(3.7)

Suppose for instance our experiment is to toss 10 coins. Let X denote the number of heads we get
out of 10. We might get four heads in the first repetition of the experiment, i.e. X; = 4, seven
heads in the second repetition, so X9 = 7, and so on. Intuitively, the long-run average value of X
will be 5. (This will be proven below.) Thus we say that the expected value of X is 5, and write
E(X) = 5.

3.5.3 Existence of the Expected Value

The above defintion puts the cart before the horse, as it presumes that the limit exists. Theoretically
speaking, this might not be the case. However, it does exist if the X; have finite lower and upper
bounds, which is always true in the real world. For instance, no person has height of 50 feet, say,
and no one has negative height either.

For the remainder of this book, we will usually speak of “the” expected value of a random variable
without adding the qualifier “if it exists.”

3.5.4 Computation and Properties of Expected Value
Continuing the coin toss example above, let K;, be the number of times the value i occurs among

X1, Xp, 1 =0,.,10, n = 1,2,3,... For instance, K429 is the number of times we get four heads,
in the first 20 repetitions of our experiment. Then

Xi1+...+ X,

BE(X) = lim ————* (3.8)
0-Kop+1-Kip+2-Kop... +10- Ky,
= lim On 1 Ran 2 R 19 (3.9)
n—00 n
10
Kin
= > i lim (3.10)
n—oo n

=0
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To understand that second equation, suppose when n = 5 we have 2, 3, 1, 2 and 1 for our values
of X1, Xo, X3, X4, X5,. Then we can group the 2s together and group the 1s together, and write

243+14+24+1=2x2+2x1+1x3 (3.11)

But lim,,— oo Ké" is the long-run fraction of the time that X = i. In other words, it’s P(X = i)! So,

10
E(X) = Zz - P(X =) (3.12)

So in general we have:
Property A:

The expected value of a discrete random variable X which takes values in the set A is

E(X)=> cP(X =c) (3.13)
ceEA

Note that (3.13) is the formula we’ll use. The preceding equations were derivation, to motivate
the formula. Note too that is not the definition of expected value; that was in It is quite
important to distinguish between all of these, in terms of goals.

It will be shown in Section that in our example above in which X is the number of heads we
get in 10 tosses of a coin,

P(X =i) = (11())0.52'(1 —0.5)107 (3.14)

So

7

10
E(X) = Zi(l,())o.si(l —0.5)1077 (3.15)

It turns out that E(X) = 5.

For X in our dice example,

6
E(X)=> c- é =35 (3.16)
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It is customary to use capital letters for random variables, e.g. X here, and lower-case letters for
values taken on by a random variable, e.g. ¢ here. Please adhere to this convention.

By the way, it is also customary to write EX instead of E(X), whenever removal of the parentheses
does not cause any ambiguity. An example in which it would produce ambiguity is E(U?). The
expression EU? might be taken to mean either E(U?), which is what we want, or (EU)?, which is
not what we want.

For S = X+Y in the dice example,

1 3 1
ES)=2-—4+3-—=+4+4- — A2 — =7 3.17
(%) 36+ 36jL 36+ 36 ( )

In the case of N, tossing a coin until we get a head:

2 2i = (3.18)

(We will not go into the details here concerning how the sum of this particular infinite series is
computed.)

Some people like to think of E(X) using a center of gravity analogy. Forget that analogy! Think
notebook! Intuitively, E(X) is the long-run average value of X among all the lines of
the notebook. So for instance in our dice example, E(X) = 3.5, where X was the number of dots
on the blue die, means that if we do the experiment thousands of times, with thousands of lines in
our notebook, the average value of X in those lines will be about 3.5. With S = X+Y, E(S) = 7.
This means that in the long-run average in column S in Table is 7.

Of course, by symmetry, E(Y) will be 3.5 too, where Y is the number of dots showing on the
yellow die. That means we wasted our time calculating in Equation (3.17)); we should have realized
beforehand that E(S) is 2 x 3.5 = 7.

In other words:
Property B:

For any random variables U and V, the expected value of a new random variable D = U+V is the
sum of the expected values of U and V:

EU+V)=EU)+E(V) (3.19)

Note carefully that U and V do NOT need to be independent random variables for this relation
to hold. You should convince yourself of this fact intuitively by thinking about the notebook
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notebook line | outcome \ blue+yellow = 67 \ S ‘
1 blue 2, yellow 6 | No 8
2 blue 3, yellow 1 | No 4
3 blue 1, yellow 1 | No 2
4 blue 4, yellow 2 | Yes 6
5 blue 1, yellow 1 | No 2
6 blue 3, yellow 4 | No 7
7 blue 5, yellow 1 | Yes 6
8 blue 3, yellow 6 | No 9
9 blue 2, yellow 5 | No 7

Table 3.1: Expanded Notebook for the Dice Problem

notion. Say we look at 10000 lines of the notebook, which has columns for the values of U, V and
U+V. It makes no difference whether we average U4V in that column, or average U and V in their
columns and then add—either way, we’ll get the same result.

While you are at it, use the notebook notion to convince yourself of the following;:

Properties C:
e For any random variable U and constant a, then

E(aU) = aEU (3.20)

e For random variables X and Y—mnot necessarily independent—and constants a and b, we have

E(aX +bY)=aEX +bEY (3.21)

This follows by taking U = aX and V = bY in (3.19)), and then using (3.21).

By induction, for constants ay, ..., a; and random variables X7, ..., X, form the new random
variable a1 X1 + ... + a;X. Then

E(a1X1+...+anXk) :alEXl—l-...—i-anEXk) (3.22)
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e For any constant b, we have
E®b)=0b (3.23)

For instance, say U is temperature in Celsius. Then the temperature in Fahrenheit is W = %U +32.
So, W is a new random variable, and we can get its expected value from that of U by using (3.21))

with ¢ = % and b = 32.

If you combine (3.23)) with (3.21]), we have an important special case:
E(aX +b)=aEX +b (3.24)

Another important point:

Property D: If U and V are independent, then

E(UV)=EU-EV (3.25)

In the dice example, for instance, let D denote the product of the numbers of blue dots and yellow
dots, i.e. D = XY. Then

E(D) =3.5%=12.25 (3.26)

Equation (3.25)) doesn’t have an easy “notebook proof.” It is proved in Section [13.3.1

Consider a function g() of one variable, and let W = ¢g(X). W is then a random variable too. Say
X has support A, as in (3.13)). Then W has support B = {g(c) : ceA}. (

For instance, say g() is the squaring function, and X takes on the values -1, 0 and 1, with probability
0.5, 0.4 and 0.1. Then

A={-1,0,1} (3.27)

and

B={0,1} (3.28)

Define

Aj={c:ce A g(c)=d} (3.29)
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In our above squaring example, we will have

Ap— {0}, Ay ={-1,1} (3.30)
Then

P(W =d)=P(X € Ag) (3.31)
Elg(X)] = EW) (3.32)
= Y dP(W =d) (3.33)

deB
= > dY P(X=¢ (3.34)

deB c€Ay

= Zg(c)P(X =c) (3.35)

ceA

(Going from the next-to-last equation here to the last one is rather tricky. Work through for the
case of our squaring function example above in order to see why the final equation does follow.

Property E:
If E[g(X)] exists, then

Elg(X)] =) g(c)- P(X =¢) (3.36)
ceA

where the sum ranges over all values c that can be taken on by X.

For example, suppose for some odd reason we are interested in finding E(\/y ), where X is the
number of dots we get when we roll one die. Let W = v/X). Then W is another random variable,
and is discrete, since it takes on only a finite number of values. (The fact that most of the values
are not integers is irrelevant.) We want to find EW.

Well, W is a function of X, with g(t) = v/¢. So, (3.36) tells us to make a list of values in the
support of W, i.e. v1,v/2,...,/6, and a list of the corresponding probabilities for X, which are all
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%. Substituting into 1) we find that

E(WVX) = % Z Vi (3.37)

What about a function of several variables? Say for instance you are finding E(UV), where U has
support, say, 1,2 and V has support 5,12,13. In order to find E(UV), you need to know the support
of UV, recognizing that it, the product UV, is a new random variable in its own right. Let’s call it
W. Then in this little example, W has support 5,12,13,10,24,26. Then compute

5P(W =5)+12P(W =12) + ... =5P(U =1,V =5) + 12P(U = 1,V = 12) + ...

Note: Equation (3.36) will be one of the most heavily used formulas in this book. Make sure you
keep it in mind.

3.5.5 “Mailing Tubes”

The properties of expected value discussed above are key to the entire remainder of
this book. You should notice immediately when you are in a setting in which they
are applicable. For instance, if you see the expected value of the sum of two random
variables, you should instinctively think of right away.

As discussed in Section these properties are “mailing tubes.” For instance, is a “mailing
tube”—make a mental note to yourself saying, “If I ever need to find the expected value of the sum
of two random variables, I can use .” Similarly, (3.36]) is a mailing tube; tell yourself, “If 1
ever see a new random variable that is a function of one whose probabilities I already know, I can
find the expected value of the new random variable using .”

You will encounter “mailing tubes” throughout this book. For instance, (3.49) below is a very
important “mailing tube.” Constantly remind yourself—“Remember the ‘mailing tubes’!”

3.5.6 Casinos, Insurance Companies and “Sum Users,” Compared to Others

The expected value is intended as a measure of central tendency, i.e. as some sort of definition
of the probablistic “middle” in the range of a random variable. There are various other such
measures one can use, such as the median, the halfway point of a distribution, and today they are
recognized as being superior to the mean in certain senses. For historical reasons, the mean plays
an absolutely central role in probability and statistics. Yet one should understand its limitations.
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(Warning: The concept of the mean is likely so ingrained in your consciousness that you simply
take it for granted that you know what the mean means, no pun intended. But try to take a step
back, and think of the mean afresh in what follows.)

First, the term ezpected value itself is a misnomer. We do not expect the number of dots D to be
3.5 in the die example in Section [3.5.1.1} in fact, it is impossible for W to take on that value.

Second, the expected value is what we call the mean in everyday life. And the mean is terribly
overused. Consider, for example, an attempt to describe how wealthy (or not) people are in the
city of Davis. If suddenly Bill Gates were to move into town, that would skew the value of the
mean beyond recognition.

But even without Gates, there is a question as to whether the mean has that much meaning. After
all, what is so meaningful about summing our data and dividing by the number of data points?
The median has an easy intuitive meaning, but although the mean has familiarity, one would be
hard pressed to justify it as a measure of central tendency.

What, for example, does Equation mean in the context of people’s heights in Davis? We
would sample a person at random and record his/her height as X;. Then we’d sample another
person, to get X9, and so on. Fine, but in that context, what would mean? The answer is,
not much. So the significance of the mean height of people in Davis would be hard to explain.

For a casino, though, means plenty. Say X is the amount a gambler wins on a play of a
roulette wheel, and suppose is equal to $1.88. Then after, say, 1000 plays of the wheel (not
necessarily by the same gambler), the casino knows from it will have paid out a total of about
$1,880. So if the casino charges, say $1.95 per play, it will have made a profit of about $70 over
those 1000 plays. It might be a bit more or less than that amount, but the casino can be pretty
sure that it will be around $70, and they can plan their business accordingly.

The same principle holds for insurance companies, concerning how much they pay out in claims.
With a large number of customers, they know (“expect”!) approximately how much they will pay
out, and thus can set their premiums accordingly. Here the mean has a tangible, practical meaning.

The key point in the casino and insurance companies examples is that they are interested in totals,
such as total payouts on a blackjack table over a month’s time, or total insurance claims paid in
a year. Another example might be the number of defectives in a batch of computer chips; the
manufacturer is interested in the total number of defectives chips produced, say in a month. Since
the mean is by definition a total (divided by the number of data points), the mean will be of direct
interest to casinos etc.

By contrast, in describing how wealthy people of a town are, the total height of all the residents is
not relevant. Similarly, in describing how well students did on an exam, the sum of the scores of all
the students doesn’t tell us much. (Unless the professor gets $10 for each point in the exam scores
of each of the students!) A better description for heights and exam scores might be the median
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height or score.

Nevertheless, the mean has certain mathematical properties, such as , that have allowed the
rich development of the fields of probability and statistics over the years. The median, by contrast,
does not have nice mathematical properties. In many cases, the mean won’t be too different from
the median anyway (barring Bill Gates moving into town), so you might think of the mean as a
convenient substitute for the median. The mean has become entrenched in statistics, and we will
use it often.

3.6 Variance

As in Section the concepts and properties introduced in this section form the very core of
probability and statistics. Except for some specific calculations, these apply to both
discrete and continuous random variables.

3.6.1 Definition

While the expected value tells us the average value a random variable takes on, we also need
a measure of the random variable’s variability—how much does it wander from one line of the
notebook to another? In other words, we want a measure of dispersion. The classical measure is
variance, defined to be the mean squared difference between a random variable and its mean:

Definition 4 For a random wvariable U for which the expected values written below exist, the vari-
ance of U s defined to be

Var(U) = E[(U — EU)?| (3.38)
For X in the die example, this would be

Var(X) = E[(X — 3.5)%] (3.39)

Remember what this means: We have a random variable X, and we’re creating a new random
variable, W = (X — 3.5)2, which is a function of the old one. We are then finding the expected
value of that new random variable W.

In the notebook view, E[(X — 3.5)?] is the long-run average of the W column:
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’ line ‘ X ‘ A ‘
21225
51225
6| 6.25
3
5
1

0.25
2.25
6.25

Y| O = | W N~

To evaluate this, apply (3.36]) with g(c) = (¢ — 3.5)2:
1
Var(X) = —3.5)%- — =292 3.40
ar(X) =3 (e~ 35) ¢ (3.40)

You can see that variance does indeed give us a measure of dispersion. In the expression Var(U) =
E[(U — EU)?], if the values of U are mostly clustered near its mean, then (U — EU)? will usually
be small, and thus the variance of U will be small; if there is wide variation in U, the variance will
be large.

Property F:

Var(U) = E(U?) — (BEU)? (3.41)

The term E(U?) is again evaluated using (3.36]).
Thus for example, if X is the number of dots which come up when we roll a die. Then, from (3.41]),

Var(X) = E(X?) — (EX)? (3.42)
Let’s find that first term (we already know the second is 3.52). From (3.36)),

6
E(X?) = Zﬁ : é _a (3.43)

Thus Var(X) = E(X?) — (EX)* = % — 3.5?

Remember, though, that (3.41]) is a shortcut formula for finding the variance, not the definition of
variance.

Below is the derivation of (3.41). Keep in mind that EU is a constant.
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Var(U) = E[(U — EU)Y (3.44)
= E[U?-2EU-U + (EU)?| (algebra) (3.45)
= E(U%) +E(-2EU -U) +E[( U)% (3.19) (3.46)
= E(U% —2EU - EU + (BU)* (3.20), - (3.47)
= E(U?) - (BEU) (3.48)
An important behavior of variance is:
Property G:
Var(cU) = Var(U) (3.49)

for any random variable U and constant c. It should make sense to you: If we multiply a random
variable by 5, say, then its average squared distance to its mean should increase by a factor of 25.

Let’s prove ($3.49). Define V = cU. Then

Var(V) = E[(V — EV)?] (def.) (3.50)
= E{[cU — E(cU)]*} (subst.) (3.51)
= B{cU ~ cEUP} (B21)) (3.52)
= E{P|U — EU?} (algebra) (3.53)
= ZE{{U - EU)’} (8:21)) (3.54)
= AVar(U) (def.) (3.55)
Shifting data over by a constant does not change the amount of variation in them:
Property H:
Var(U +d) =Var(U) (3.56)

for any constant d.

Intuitively, the variance of a constant is 0—after all, it never varies! You can show this formally

using (3A1):

Var(c) = E(?) — [E(e))? = -2 =0 (3.57)
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The square root of the variance is called the standard deviation.

Again, we use variance as our main measure of dispersion for historical and mathematical reasons,
not because it’s the most meaningful measure. The squaring in the definition of variance produces
some distortion, by exaggerating the importance of the larger differences. It would be more natural
to use the mean absolute deviation (MAD), E(|U — EU|). However, this is less tractable
mathematically, so the statistical pioneers chose to use the mean squared difference, which lends
itself to lots of powerful and beautiful math, in which the Pythagorean Theorem pops up in abstract
vector spaces. (See Section for details.)

As with expected values, the properties of variance discussed above, and also in Sec-
tion below, are key to the entire remainder of this book. You should notice
immediately when you are in a setting in which they are applicable. For instance,
if you see the variance of the sum of two random variables, you should instinctively
think of right away, and check whether they are independent.

3.6.2 More Practice with the Properties of Variance

Suppose X and Y are independent random variables, with EX = 1, EY = 2, Var(X) = 3 and
Var(Y) = 4. Let’s find Var(XY). (The reader should make sure to supply the reasons for each
step, citing equation numbers from the material above.)

Var(XY) = E(X?*Y?) - [B(XY))? (3.58)
= E(X%.E(Y? - (EX EY)? (3.59)
= [Var(X)+ (EX)?] - [Var(Y) + (EY)?] — (EX - EY)? (3.60)
= 3+1H4+2%) - (1-2)? (3.61)
= 28 (3.62)

3.6.3 Central Importance of the Concept of Variance

No one needs to be convinced that the mean is a fundamental descriptor of the nature of a random
variable. But the variance is of central importance too, and will be used constantly throughout the
remainder of this book.

The next section gives a quantitative look at our notion of variance as a measure of dispersion.



3.6. VARIANCE 95

3.6.4 Intuition Regarding the Size of Var(X)

A billion here, a billion there, pretty soon, you're talking real money—attribted to the late Senator
Everitt Dirksen, replying to a statement that some federal budget item cost “only” a billion dollars

Recall that the variance of a random variable X is supposed to be a measure of the dispersion of X,
meaning the amount that X varies from one instance (one line in our notebook) to the next. But
if Var(X) is, say, 2.5, is that a lot of variability or not? We will pursue this question here.

3.6.4.1 Chebychev’s Inequality

This inequality states that for a random variable X with mean ; and variance o2,

P(IX =il = o) < (3.63)

1
2
In other words, X strays more than, say, 3 standard deviations from its mean at most only 1/9 of
the time. This gives some concrete meaning to the concept of variance/standard deviation.

You’ve probably had exams in which the instructor says something like “An A grade is 1.5 standard
deviations above the mean.” Here c in (3.63)) would be 1.5.

We'll prove the inequality in Section [3.14

3.6.4.2 The Coefficient of Variation
Continuing our discussion of the magnitude of a variance, look at our remark following (3.63):

In other words, X does not often stray more than, say, 3 standard deviations from its
mean. This gives some concrete meaning to the concept of variance/standard deviation.

Or, think of the price of, say, widgets. If the price hovers around a $1 million, but the variation
around that figure is only about a dollar, you’d say there is essentially no variation. But a variation
of about a dollar in the price of a hamburger would be a lot.

These considerations suggest that any discussion of the size of Var(X) should relate to the size of
E(X). Accordingly, one often looks at the coefficient of variation, defined to be the ratio of the
standard deviation to the mean:

Var(X)

e (3.64)

coef. of var. =
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This is a scale-free measure (e.g. inches divided by inches), and serves as a good way to judge
whether a variance is large or not.

3.7 A Useful Fact

For a random variable X, consider the function

g(c) = B[(X — ¢)?] (3.65)
Remember, the quantity E[(X — c)?] is a number, so g(c) really is a function, mapping a real
number ¢ to some real output.

We can ask the question, What value of ¢ minimizes g(c)? To answer that question, write:

g(c) = B[(X —¢)}] = B(X% = 2cX + %) = B(X?) — 2cEX + ¢ (3.66)

where we have used the various properties of expected value derived in recent sections.

To make this concrete, suppose we are guessing people’s weights—without seeing them and without
knowing anything about them at all. (This is a somewhat artificial question, but it will become
highly practical in Chapter ??.) Since we know nothing at all about these people, we will make
the same guess for each of them.

What should that guess-in-common be? Your first inclination would be to guess everyone to be the
mean weight of the population. If that value in our target population is, say, 142.8 pounds, then
we’ll guess everyone to be that weight. Actually, that guess turns out to be optimal in a certain
sense, as follows.

Say X is a person’s weight. It’s a random variable, because these people are showing up at random
from the population. Then X — ¢ is our prediction error. How well will do in our predictions? We
can’t measure that as

E(erro) (3.67)

because that quantity is 0! (What mailing tube is at work here?)

A reasonable measure would be

E(|X —¢f) (3.68)
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However, due to tradition, we use

E[(X —¢)?] (3.69)

Now differentiate with respect to c, and set the result to 0. Remembering that E(X?) and EX are
constants, we have

0=—2EX +2c (3.70)

so the minimizing c is ¢ = EX!
In other words, the minimum value of E[(X — ¢)?] occurs at ¢ = EX. Our intuition was right!

Moreover: Plugging ¢ = EX into (3.66)) shows that the minimum value of g(c) is E(X — EX)?] ,
which is Var(X)!

In notebook terms, think of guessing many, many people, meaning many lines in the notebook, one
per person. Then ([3.69) is the long-run average squared error in our guesses, and we find that we
minimize that by guessing everyone’s weight to be the population mean weight.

But why look at average squared error? It accentuates the large errors. Instead, we could minimize
(3.68). It turns out that the best ¢ here is the population median weight.

3.8 Covariance

This is a topic we’ll cover fully in Chapter but at least introduce here.

A measure of the degree to which U and V vary together is their covariance,

Cov(U,V) = E[(U — EU)(V — EV)] (3.71)

Except for a divisor, this is essentially correlation. If U is usually large (relative to its expectation)
at the same time V is small (relative to its expectation), for instance, then you can see that the
covariance between them will be negative. On the other hand, if they are usually large together or
small together, the covariance will be positive.

For example, suppose U and V are the height and weight, respectively, of a person chosen at random
from some population, and think in notebook terms. Each line shows the data for one person, and
we'll have columns for U, V, U - EU, V - EV and (U - EU) (V - EV). Then is the long-run
average of that last column. Will it be positive or negative? Reason as follows:
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Think of the lines in the notebook for people who are taller than average, i.e. for whom U — FEU > 0.
Most such people are also heavier than average, i.e. V. — EV > 0, so that (U — EU)(V — EV) > 0.
On the other hand, shorter people also tend to be lighter, so most lines with shorter people will
have U — EU < 0 and V — EV < 0—but still (U — EU)(V —EV) > 0. In other words, the long-run
average of the (U - EU) (V - EV) column will be positive.

The point is that, if two variables are positively related, e.g. height and weight, their covariance
should be positive. This is the intuitive underlying defining covariance as in (3.71)).

Again, one can use the properties of E() to show that
Cov(U,V)=EUV)—-EU-EV (3.72)
Again, this will be derived fully in Chapter ??, but you think about how to derive it yourself. Just

use our old mailing tubes, e.g. E(X+Y) = EX + EY, E(cX) for a constant ¢, etc. Note that EU
and EV are constants!

Also
Var(U+V)=Var(U)+ Var(V) +2Cov(U,V) (3.73)

and more generally,

Var(aU +bV) = a*Var(U) + b*Var(V) + 2abCov(U, V) (3.74)

for any constants a and b.

(3.72) imply that Cov(U,V) = 0. In that case,

Var(U+V)=Var(U)+ Var(V) (3.75)

By the way, (3.75)) is actually the Pythagorean Theorem in a certain esoteric, infinite-dimesional
vector space (related to a similar remark made earlier). This is pursued in Section [19.9.2] for the
mathematically inclined.

Generalizing (3.74)), for constants aq, ..., ax and random variables X7, ..., X, form the new random
variable a1 X1 + ... + ax Xi. Then

k n
Var(a1 X1 + ... + an, Xi) = Za?Var(Xi) +2 Z Cov(X;, X;) (3.76)
i=1

1<i<j<n
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If the X; are independent, then we have the special case

k
Var(a1 X1 + ... + an, Xi) = Za?Var(Xi) (3.77)
i=1

3.9 Indicator Random Variables, and Their Means and Variances

Definition 5 A random wvariable that has the value 1 or 0, according to whether a specified event
occurs or not is called an indicator random variable for that event.

You'll often see later in this book that the notion of an indicator random variable is a very handy
device in certain derivations. But for now, let’s establish its properties in terms of mean and
variance.

Handy facts: Suppose X is an indicator random variable for the event A. Let p denote
P(A). Then

E(X)=p (3.78)

Var(X)=p(1—p) (3.79)

This two facts are easily derived. In the first case we have, using our properties for expected value,

EX=1-P(X=1)+0-P(X=0)=P(X=1)=P(A) =p (3.80)

The derivation for Var(X) is similar (use (3.41))).

For example, say Coin A has probability 0.6 of heads, Coin B is fair, and Coin C has probability
0.2 of heads. I toss A once, getting X heads, then toss B once, getting Y heads, then toss C once,
getting Z heads. Let W = X + Y + Z, i.e. the total number of heads from the three tosses (W
ranges from 0 to 3). Let’s find P(W = 1) and Var(W).

The first one uses old methods:

PW=1) = P(X=1landY =0and Z=0or..) (3.81)
0.6-0.5-0.8+0.4-0.5-0.8+0.4-0.5-0.2 (3.82)
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For Var(W), let’s use what we just learned about indicator random variables; each of X, Y and Z
are such variables. Var(W) = Var(X) + Var(Y) + Var(Z), by independence and ({3.75). Since X is

an indicator random variable, Var(X) = 0.6 - 0.4, etc. The answer is then

0.6-0440.5-0.54+0.2-0.8 (3.83)

3.9.1 Example: Return Time for Library Books

Suppose at some public library, patrons return books exactly 7 days after borrowing them, never
early or late. However, they are allowed to return their books to another branch, rather than the
branch where they borrowed their books. In that situation, it takes 9 days for a book to return
to its proper library, as opposed to the normal 7. Suppose 50% of patrons return their books to a
“foreign” library. Find Var(T), where T is the time, either 7 or 9 days, for a book to come back to
its proper location.

Note that

T =7+2I, (3.84)

where I is an indicator random variable for the event that the book is returned to a “foreign”
branch. Then

Var(T) =Var(7+2I) =4Var(l) =4-0.5(1 — 0.5) (3.85)

Now let’s look at a somewhat more general model. Here we will assume that borrowers return
books after 4, 5, 6 or 7 days, with probabilities 0.1, 0.2, 0.3, 0.4, respectively. As before, 50% of
patrons return their books to a “foreign” branch, resulting in an extra 2-day delay before the book
arrives back to its proper location. The library is open 7 days a week.

Suppose you wish to borrow a certain book, and inquire at the library near the close of business
on Monday. Assume too that no one else is waiting for the book. You are told that it had been
checked out the previous Thursday. Find the probability that you will need to wait until Wednesday
evening to get the book. (You check every evening.)

Let B denote the time needed for the book to arrive back at its home branch, and define I as before.
Then
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P(B =6 and B > 4)

P(B=6|B>4) = P> 5 (3.86)
_ m (3.87)
_ P(B =6 and Il—_OPE); 1:345 6 and I=1) (3.88)
0.5-034+0.5-0.1
N E —02-0.1 (3.89)
- 4 (3.90)

Here is a simulation check:

libsim <— function(nreps) {
# patron return time
prt <— sample(c(4,5,6,7),nreps,replace=T,prob=c(0.1,0.2,0.3,0.4))
# indicator for foreign branch
i <— sample(c(0,1),nreps,replace=T)
b <— prt + 2x*i
x <— cbind (prt,i,b)
# look only at the relevant notebook lines
bgtd <— x[b > 4]
# among those lines, what proportion have B = 67
mean(bgtd [ ,3] = 6)

3.9.2 Example: Indicator Variables in a Committee Problem

A committee of four people is drawn at random from a set of six men and three women. Suppose
we are concerned that there may be quite a gender imbalance in the membership of the committee.
Toward that end, let M and W denote the numbers of men and women in our committee, and let
D = M-W. Let’s find E(D), in two different ways.

D has support consisting of the values 4-0, 3-1, 2-2 and 1-3, i.e. 4, 2, 0 and -2. So from ({3.13))

ED=-2-P(D=-2)+0-P(D=0)+2-P(D=2)+4-P(D =4) (3.91)
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Now, using reasoning along the lines in Section we have

(1) ()

P(D=-2)=P(M=1and W =3) = (3.92)

After similar calculations for the other probabilities in 1) we find the ED = %.

Note what this means: If we were to perform this experiment many times, i.e. choose committees
again and again, on average we would have a little more than one more man than women on the
committee.

Now let’s use our “mailing tubes” to derive ED a different way:

ED = E(M-W) (3.93)
= E[M—(4— M) (3.94)

= E(2M —4) (3.95)
(3.96)

= 2EM —4 (from (3.21)))

Now, let’s find EM by using indicator random variables. Let G; denote the indicator random
variable for the event that the i** person we pick is male, i = 1,2,3,4. Then

M=G1+Gs+ G3+ Gy (3.97)

o)
EM = E(Gy+ G2+ G35+ Gy) (3.98)
= FEG+FEGy+ EGs+ EGy [ from " (3.99)

= P(Gi=1)+P(Gy=1)+P(G3=1)+ P(Gy,=1) [from (3.78)]  (3.100)

Note carefully that the second equality here, which uses (3.19)), is true in spite of the fact that the
G, are not independent. Equation (3.19)) does not require independence.

Another key point is that, due to symmetry, P(G; = 1) is the same for all i. Note that we did
not write a conditional probability here! Once again, think of the notebook view: By definition,
(P(G2 = 1) is the long-run proportion of the number of notebook lines in which Gy = 1—regardless
of the value of G; in those lines.
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Now, to see that P(G; = 1) is the same for all i, suppose the six men that are available for the
committee are named Alex, Bo, Carlo, David, Eduardo and Frank. When we select our first person,
any of these men has the same chance of being chosen (1/9). But that is also true for the second
pick. Think of a notebook, with a column named “second pick.” In some lines, that column will
say Alex, in some it will say Bo, and so on, and in some lines there will be women’s names. But
in that column, Bo will appear the same fraction of the time as Alex, due to symmetry, and that
will be the same fraction as for, say, Alice, again 1/9.

Now,
P(Gi=1)==-=< (3.101)

Thus

ED:2-(4-§)—4: (3.102)

3.9.3 Example: Spinner Game
In a certain game, Person A spins a spinner and wins S dollars, with mean 10 and variance 5.

Person B flips a coin. If it comes up heads, Person A must give B whatever A won, but if it comes
up tails, B wins nothing. Let T denote the amount B wins. Let’s find Var(T).

We can use (3.60)), in this case with X = I, where I is an indicator variable for the event that B
gets a head, and with Y = S. Then T'=1- 5, and I and S are independent, so

Var(T) = Var(IS) = [Var(I) + (EI)?] - [Var(S) + (ES)?] — (EI - ES)? (3.103)

Then use the facts that I has mean 0.5 and variance 0.5(1-0.5) (Equations (3.78)) and (3.79), with
S having the mean 10 and variance 5, as given in the problem.

3.10 Expected Value, Etc. in the ALOHA Example

Finding expected values etc. in the ALOHA example is straightforward. For instance,

EX;=0-P(X;=0)+1-P(X;=1)+2-P(X; =2)=1-04842-052=152  (3.104)

Here is R code to find various values approximately by simulation:
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# finds E(X1), E(X2), Var(X2), Cov(X1,X2)
sim <- function(p,q,nreps) {

© 0 N O U e W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

sumxl <- 0
sumx2 <- 0
sumx2sq <- 0
sumx1x2 <- 0
for (i in 1:nreps) {
numtrysend <-
sum(sample(0:1,2,replace=TRUE,prob=(1-p,p)))
if (numtrysend == 1) X1 <- 1
else X1 <- 2
numactive <- X1
if (X1 == 1 &% runif(1) < q) numactive <- numactive + 1
if (numactive == 1)
if (runif(1l) < p) X2 <- 0
else X2 <- 1
else { # numactive = 2
numtrysend <- 0O
for (i in 1:2)
if (runif(1) < p) numtrysend <- numtrysend + 1
if (numtrysend == 1) X2 <- 1
else X2 <- 2
}
sumxl <- sumxl + X1
sumx2 <- sumx2 + X2
sumx2sq <- sumx2sq + X272
sumx1x2 <- sumx1x2 + X1*X2
}
# print results
meanxl <- sumxl /nreps
cat ("E(X1) :",meanx1,"\n")
meanx2 <- sumx2 /nreps
cat ("E(X2):",meanx2,"\n")
cat("Var(X2):",sumx2sq/nreps - meanx2°2,"\n")
cat("Cov(X1,X2):",sumx1x2/nreps - meanxl*meanx2,"\n")

As a check on your understanding so far, you should find at least one of these values by hand, and
see if it jibes with the simulation output.

3.11 Example: Measurements at Different Ages

Say a large research program measures boys’ heights at age 10 and age 15. Call the two heights X
and Y. So, each boy has an X and a Y. Each boy is a “notebook line”, and the notebook has two
columns, for X and Y. We are interested in Var(Y-X). Which of the following is true?

(i) Var(Y = X) =Var(Y) + Var(X)

(ii) Var(Y — X) =Var(Y) — Var(X)
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(iii) Var(Y — X) < Var(Y) + Var(X

)
(iv) Var(Y = X) < Var(Y) — Var(X)
(v) Var(Y — X) > Var(Y) + Var(X)

)

(
(
(
(vi) Var(Y — X) > Var(Y) — Var(X

(vii) None of the above.

Use the mailing tube (3.74)):
Var(Y = X)=VarlY + (-X)] =Var(Y) + Var(X) — 2Cov(X,Y) (3.105)

Since X and Y are positively correlated, their covariance is positive, so the answer is (iii).

3.12 Example: Bus Ridership Model

In the bus ridership model, Section let’s find Var(Ly):

Var(Ly) = E(L?) — (EL)* (3.106)
EL,=EB; =0-05+1-04+2-0.1 (3.107)
E(L?)=0%-05+12-04+2%.0.1 (3.108)

Then put it all together.

3.13 Distributions

The idea of the distribution of a random variable is central to probability and statistics.

Definition 6 Let U be a discrete random variable. Then the distribution of U is simply the support
of U, together with the associated probabilities.
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Example: Let X denote the number of dots one gets in rolling a die. Then the values X can take
on are 1,2,3,4,5,6, each with probability 1/6. So

1 1 1 1 1 1

176)7(236)’(3a6)7(&6)?(576)7(6?7)} (3'109)

distribution of X = {( 6

Example: Recall the ALOHA example. There X; took on the values 1 and 2, with probabilities
0.48 and 0.52, respectively (the case of 0 was impossible). So,

distribution of X; = {(0,0.00), (1,0.48),(2,0.52)} (3.110)

Example: Recall our example in which N is the number of tosses of a coin needed to get the first
head. N has support 1,2,3,..., the probabilities of which we found earlier to be 1/2, 1/4, 1/8,... So,

1 1 1
distribution of N = {(1, ), (2, ), (3, 5.} (3.111)

It is common to express this in functional notation:

Definition 7 The probability mass function (pmf) of a discrete random variable V, denoted
pv, as

pv (k) =P(V =k) (3.112)

for any value k in the support of V.

(Please keep in mind the notation. It is customary to use the lower-case p, with a subscript
consisting of the name of the random variable.)

Note that py() is just a function, like any function (with integer domain) you’ve had in your
previous math courses. For each input value, there is an output value.

3.13.1 Example: Toss Coin Until First Head

In (3.111)),

pn(k) = — k=12, .. (3.113)



3.13. DISTRIBUTIONS 67

3.13.2 Example: Sum of Two Dice

In the dice example, in which S = X+Y,

(1
%, ]C — 2
Z, k=3
ps(k) =432, k=4 (3.114)
1
%, k == 12

It is important to note that there may not be some nice closed-form expression for py like that of
(3.113). There was no such form in (3.114]), nor is there in our ALOHA example for px, and px,.

3.13.3 Example: Watts-Strogatz Random Graph Model

Random graph models are used to analyze many types of link systems, such as power grids, social
networks and even movie stars. We saw our first example in Section [2.13.1] and here is another, a
variation on a famous model of that type, due to Duncan Watts and Steven Strogatz.

3.13.3.1 The Model

We have a graph of n nodes, e.g. in which each node is a person)E] Think of them as being linked
in a circle—we’re just talking about relations here, not physical locations—so we already have n
links. One can thus reach any node in the graph from any other, by following the links of the circle.
(We'll assume all links are bidirectional.)

We now randomly add k more links (k is thus a parameter of the model), which will serve as
“shortcuts.” There are (g) = n(n — 1)/2 possible links between nodes, but remember, we already
have n of those in the graph, so there are only n(n—1)/2 —n = n?/2 — 3n/2 possibilities left. We'll

be forming k new links, chosen at random from those n?/2 — 3n/2 possibilities.

Let M denote the number of links attached to a particular node, known as the degree of a node.
M is a random variable (we are choosing the shortcut links randomly), so we can talk of its pmf,
Py, termed the degree distribution of M, which we’ll calculate now.

Well, pys(r) is the probability that this node has r links. Since the node already had 2 links before
the shortcuts were constructed, pps(r) is the probability that r-2 of the k shortcuts attach to this

3The word graph here doesn’t mean “graph” in the sense of a picture. Here we are using the computer science
sense of the word, meaning a system of vertices and edges. It’s common to call those nodes and links.
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node.

This problem is similar in spirit to (though admittedly more difficult to think about than) kings-
and-hearts example of Section Other than the two neighboring links in the original circle
and the “link” of a node to itself, there are n-3 possible shortcut links to attach to our given node.
We're interested in the probability that r-2 of them are chosen, and that k-(r-2) are chosen from
the other possible links. Thus our probability is:

n— n?/2—3n/2—(n— n— n?/2—5n

(D) R -

pu(r) = (n2/273n/2) - (n2/273n/2) (3.115)
k k

3.13.3.2 Further Reading
UCD professor Raissa D’Souza specializes in random graph models. See for instance Beyond Friend-
ship: Modeling User activity Graphs on Social Network-Based Gifting Applications, A. Nazir, A.

Waagen, V. Vijayaraghavan, C.-N. Chuah, R. M. D’Souza, B. Krishnamurthy, ACM Internet Mea-
surement Conference (IMC 2012), Nov 2012.

3.14 Proof of Chebychev’s Inequality (optional section

To prove (3.63), let’s first state and prove Markov’s Inequality: For any nonnegative random
variable Y and positive constant d,

EY

PY 2d) < — (3.116)
To prove (3.116)), let Z be the indicator random variable for the event Y > d (Section .
Now note that
Y >dZ (3.117)

To see this, just think of a notebook, say with d = 3. Then the notebook might look like Table
So

EY > dEZ (3.118)
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’ notebook line ‘ Y ‘ dZ ‘ Y >dz? ‘
11 0.36 0 yes
2| 3.6 3 yes
3] 2.6 0 yes

Table 3.2: Illustration of Y and Z

(Again think of the notebook. The long-run average in the Y column will be > the corresponding
average for the dZ column.)

The right-hand side of (3.118) is dP(Y > d), so (3.116) follows.
Now to prove (3.63)), define

Y = (X —p)? (3.119)
and set d = c?0. Then (3.116) says
E[(X — 1)
P[(X — p)? > 20’ < o (3.120)
Since
(X — p)? > c*o? if and only if | X — pu| > co (3.121)

the left-hand side of (3.120)) is the same as the left-hand side of (3.63). The numerator of the
(13.120)

right-hand size of (3. is simply Var(X), i.e. 02, so we are done.
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Chapter 4

Discrete Parametric Distribution
Families

The notion of a parametric family of distributions a key concept that will recur throughout the
book.

Consider plotting the curves g, () = (t — a)? + b. For each a and b, we get a different parabola,
as seen in this plot of three of the curves:

10-

71
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This is a family of curves, thus a family of functions. We say the numbers a and b are the
parameters of the family. Note carefully that ¢ is not a parameter, but rather just an argument
of each function. The point is that a and b are indexing the curves.

4.1 The Case of Importance to Us: Parameteric Families of pmfs

Probability mass functions are still functionsE] Thus they too can come in parametric families,
indexed by one or more parameters. We had an example in Section [3.13.3] Since we get a different
function pjs for each different values of k and n, that was a parametric family of pmfs, indexed by
k and n.

Some parametric families of pmfs have been found to be so useful over the years that they’ve been
given names. We will discuss some of those families here. But remember, they are famous just
because they have been found useful, i.e. that they fit real data well in various settings. Do not
jump to the conclusion that we always “must” use pmfs from some family.

4.2 The Geometric Family of Distributions

To explain our first parametric family of pmfs, recall our example of tossing a coin until we get the
first head, with N denoting the number of tosses needed. In order for this to take k tosses, we need
k-1 tails and then a head. Thus

1,., 1
pN(k:):(1—§)’“ 1-§,k:1,2,... (4.1)

We might call getting a head a “success,” and refer to a tail as a “failure.” Of course, these words
don’t mean anything; we simply refer to the outcome of interest (which of course we ourselves
choose) as “success.”

Define M to be the number of rolls of a die needed until the number 5 shows up. Then

par (k) = <1 _ >k_1 é k=12 .. (4.2)

reflecting the fact that the event {M = k} occurs if we get k-1 non-5s and then a 5. Here “success”
is getting a 5.

!The domains of these functions are typically the integers, but that is irrelevant; a function is a function.
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The tosses of the coin and the rolls of the die are known as Bernoulli trials, which is a sequence
of independent events. We call the occurrence of the event success and the nonoccurrence failure
(just convenient terms, not value judgments). The associated indicator random variable are denoted
B;,i=1,2,3,... So B; is 1 for success on the i*" trial, 0 for failure, with success probability p. For
instance, p is 1/2 in the coin case, and 1/6 in the die example.

In general, suppose the random variable W is defined to be the number of trials needed to get a
success in a sequence of Bernoulli trials. Then

pw(k) =1 —-p)Fipk=1,2,.. (4.3)

Note that there is a different distribution for each value of p, so we call this a parametric family
of distributions, indexed by the parameter p. We say that W is geometrically distributed with
parameter pE|

It should make good intuitive sense to you that

E(W) = (4.4)

1
p
This is indeed true, which we will now derive. First we’ll need some facts (which you should file
mentally for future use as well):

Properties of Geometric Series:

(a) For any t # 1 and any nonnegative integers r < s,

1 —¢5— r+1

Ztl_t’“ - (4.5)

This is easy to derive for the case r = 0, using mathematical induction. For the general case,
just factor out ¢".

(b) For |t < 1,

o] . 1
Zt = (4.6)
=0

To prove this, just take r = 0 and let s — oo in (4.5).

2Unfortunately, we have overloaded the letter p here, using it to denote the probability mass function on the left
side, and the unrelated parameter p, our success probability on the right side. It’s not a problem as long as you are
aware of it, though.
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(c) For |t| <1,
o 1
gi—1
= —0 4.
2 = gy (47)

This is derived by applying % to

Deriving (4.4)) is then easy, using (4.7):

EW = ) i(l-p)'p (4.8)
i=1
= p)y i(l-p! (4.9)
=1
1
= p- 5 (4.10)
[1—(1-p)
1
= - 4.11
, (4.11)
Using similar computations, one can show that
1_
Var(W) = p2p (4.12)

We can also find a closed-form expression for the quantities P(W < m), m = 1,2,... (This has a
formal name Fyy(m) , as will be seen later in Section ) For any positive integer m we have

Fyw(m) = P(W <m) (4.13)
= 1—-P(W>m) (4.14)
= 1 — P(the first m trials are all failures) (4.15)
= 1-(1—p™ (4.16)

By the way, if we were to think of an experiment involving a geometric distribution in terms of our
notebook idea, the notebook would have an infinite number of columns, one for each B;. Within
each row of the notebook, the B; entries would be 0 until the first 1, then NA (“not applicable”)
after that.

3To be more careful, we should differentiate (4.5) and take limits.
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4.2.1 R Functions

You can simulate geometrically distributed random variables via R’s rgeom() function. Its first
argument specifies the number of such random variables you wish to generate, and the second is
the success probability p.

For example, if you run

> y <- rgeom(2,0.5)

then it’s simulating tossing a coin until you get a head (y[1]) and then tossing the coin until a head
again (y[2]). Of course, you could simulate on your own, say using sample() and while(), but R
makes it convenient for you.

Here’s the full set of functions for a geometrically distributed random variable X with success
probability p:

dgeom(i,p), to find P(X =1)

pgeom(i,p), to find P(X < 1)

qgeom(q,p), to find ¢ such that P(X <c¢)=gq

rgeom(n,p), to generate n variates from this geometric distribution

Important note: Some books define geometric distributions slightly differently, as the number of
failures before the first success, rather than the number of trials to the first success. The same is
true for software—both R and Python define it this way. Thus for example in calling dgeom(),
subtract 1 from the value used in our definition.

For example, here is P(N = 3) for a geometric distribution under our defintion, with p = 0.4:

> dgeom (2,0.4)

[1] 0.144

> # check

> (1-0.4)"(3-1) % 0.4
[1] 0.144

Note that this also means one must add 1 to the result of rgeom().
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4.2.2 Example: a Parking Space Problem

Suppose there are 10 parking spaces per block on a certain street. You turn onto the street at
the start of one block, and your destination is at the start of the next block. You take the first
parking space you encounter. Let D denote the distance of the parking place you find from your
destination, measured in parking spaces. Suppose each space is open with probability 0.15, with
the spaces being independent. Find ED.

To solve this problem, you might at first think that D follows a geometric distribution. But don’t
jump to conclusions! Actually this is not the case; D is a somewhat complicated distance. But
clearly D is a function of N, where the latter denotes the number of parking spaces you see until
you find an empty one—and N is geometrically distributed.

As noted, D is a function of N:

11-N, N<10
= (4.17)
N—11, N>10
Since D is a function of N, we can use ({3.36) with g(t) as in (4.17):
10 ' 00 4
ED =Y (11—14)(1-0.15)"'0.15+ > (i —11)0.85''0.15 (4.18)
i=1 i=11

This can now be evaluated using the properties of geometric series presented above.
Alternatively, here’s how we could find the result by simulation:

parksim <— function(nreps) {
# do the experiment nreps times, recording the values of N
nvals <— rgeom(nreps,0.15) + 1
# now find the values of D
dvals <— ifelse(nvals <= 10,11—nvals ,nvals —11)
# return ED
mean(dvals)

}

Note the vectorized addition and recycling (Section [2.14.2]) in the line
nvals <— rgeom(nreps,0.15) + 1

The call to ifelse() is another instance of R’s vectorization, a vectorized if-then-else. The first
argument, evaluates to a vector of TRUE and FALSE values. For each TRUE, the corresponding
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element of dvals will be set to the corresponding element of the vector 11-nvals (again involving
vectorized addition and recycling), and for each false, the element of dvals will be set to the element
of nvals-11.

Let’s find some more, first py(3):

pn(3) = P(N =3) = (1-0.15)>710.15 (4.19)

Next, find P(D = 1):
P(D=1) = P(N=10or N =12) (4.20)
(1—0.15)1710.15 + (1 — 0.15)"*710.15 (4.21)

Say Joe is the one looking for the parking place. Paul is watching from a side street at the end of
the first block (the one before the destination), and Martha is watching from an alley situated right
after the sixth parking space in the second block. Martha calls Paul and reports that Joe never
went past the alley, and Paul replies that he did see Joe go past the first block. They are interested
in the probability that Joe parked in the second space in the second block. In mathematical terms,
what probability is that? Make sure you understand that it is P(N = 12 | N > 10 and N < 16).
It can be evaluated as above.

Also: Good news! I found a parking place just one space away from the destination. Find the
probability that I am parked in the same block as the destination.

P(N =12
P(N=12|N=100r N=12) = o=— (10 . N): ) (4.22)

7 (1-0.15)" 0.15 (4.23)
~ (1-0.15)%2 0.15 + (1 — 0.15)1 0.15 '

4.3 The Binomial Family of Distributions

A geometric distribution arises when we have Bernoulli trials with parameter p, with a variable
number of trials (N) but a fixed number of successes (1). A binomial distribution arises when
we have the opposite—a fixed number of Bernoulli trials (n) but a variable number of successes

(say X) [T

4Note again the custom of using capital letters for random variables, and lower-case letters for constants.
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For example, say we toss a coin five times, and let X be the number of heads we get. We say that
X is binomially distributed with parameters n = 5 and p = 1/2. Let’s find P(X = 2). There are
many orders in which that could occur, such as HHTTT, TTHHT, HTTHT and so on. Each order
has probability 0.52(1 — 0.5)%, and there are () orders. Thus

P(X =2)= @)0.52(1 —0.5)3 = <2> /32 =5/16 (4.24)

For general n and p,

px(k) = P(X = k) = <Z> pE(1 — p)nF (4.25)

So again we have a parametric family of distributions, in this case a family having two parameters,
n and p.

Let’s write X as a sum of those 0-1 Bernoulli variables we used in the discussion of the geometric
distribution above:

X =) B (4.26)

where B; is 1 or 0, depending on whether there is success on the i** trial or not. Note again that
the B; are indicator random variables (Section [3.9)), so

EB;=p (4.27)

and

Var(B;) = p(1 —p) (4.28)

Then the reader should use our earlier properties of E() and Var() in Sections and to fill
in the details in the following derivations of the expected value and variance of a binomial random
variable:

EX=FEBy+..,+B,) =EBy+ ..+ EB,=np (4.29)
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and from (3.75)),

Var(X) =Var(B1 + ...+ By) =Var(B1) + ... + Var(B,) = np(1 — p) (4.30)

Again, (4.29) should make good intuitive sense to you.

4.3.1 R Functions

Relevant functions for a binomially distributed random variable X for k trials and with success
probability p are:

e dbinom(ik,p), to find P(X =)
e pbinom(ik,p), to find P(X <)
e gbinom(q,k,p), to find ¢ such that P(X <¢) =g¢q

e rbinom(n,k,p), to generate n independent values of X

Our definition above of gbinom() is not quite tight, though. Consider a random variable X which
has a binomial distribution with n = 2 and p = 0.5 Then

Fx(0) = 0.25, Fx(1) = 0.50 (4.31)

So if q is, say, 0.33, there is no ¢ such that P(X < ¢) = ¢. For that reason, the actual definition of
gbinom/() is the smallest ¢ satisfying P(X < ¢) > q.

4.3.2 Example: Parking Space Model

Recall Section Let’s find the probability that there are three open spaces in the first block.

Let M denote the number of open spaces in the first block. This fits the definition of binomially-
distributed random variables: We have a fixed number (10) of independent Bernoulli trials, and we
are interested in the number of successes. So, for instance,

pu(3) = <130)0.153(1 —0.15)1073 (4.32)
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4.3.3 Example: Analysis of Social Networks

Let’s continue our earlier discussion from Section 3.13.3

One of the earliest—and now the simplest—models of social networks is due to Erdos and Renyi.
Say we have n people (or n Web sites, etc.), with (g) potential links between pairs. (We are
assuming an undirected graph here.) In this model, each potential link is an actual link with

probability p, and a nonlink with probability 1-p, with all the potential links being independent.

Recall the notion of degree distribution from Section [3.13.3] Clearly the degree distribution D;
here for a single node i is binomial with parameters n-1 and p.

But consider k nodes, say 1 through k, and let T denote the number of links involving these nodes.
Let’s find the distribution of T. That distribution is again binomial, but the number of trials must
be carefully calculated. We cannot simply say that, since each of the k vertices can have as many
as n-1 links, there are k(n-1) potential links, because there is overlap; two nodes among the k have
a potential link with each other, but we can’t count it twice. So, let’s reason this out.

Say n = 9 and k = 4. Among the four special nodes, there are (3) = 6 potential links, each on or
off with probability p, independently. Also each of the four special nodes has 9 — 4 = 5 potential
links with the “outside world,” i.e. the five non-special nodes. So there are 4 x 5 = 20 potential
links here, for a total of 25.

So, the distribution of T is binomial with

o+ (9 )

trials and success probability p.

4.4 The Negative Binomial Family of Distributions

Recall that a typical example of the geometric distribution family (Section arises as N, the
number of tosses of a coin needed to get our first head. Now generalize that, with N now being
the number of tosses needed to get our 7" head, where r is a fixed value. Let’s find P(N = k), k
=r, r+1, ... For concreteness, look at the case r = 3, k = 5. In other words, we are finding the
probability that it will take us 5 tosses to accumulate 3 heads.

First note the equivalence of two events:

{N =5} = {2 heads in the first 4 tosses and head on the 5 toss} (4.34)



4.4. THE NEGATIVE BINOMIAL FAMILY OF DISTRIBUTIONS 81

That event described before the “and” corresponds to a binomial probability:

4\ (1!
P(2 heads in the first 4 tosses) = <2> <2) (4.35)

Since the probability of a head on the k" toss is 1 /2 and the tosses are independent, we find that

P(N =5) = (3) (;)5 = 1% (4.36)

The negative binomial distribution family, indexed by parameters r and p, corresponds to random
variables that count the number of independent trials with success probability p needed until we
get r successes. The pmf is

k—1
() = PO =)= (7 - k= L (437)
We can write
N=G+..+G, (4.38)

where (G; is the number of tosses between the successes numbers i-1 and i. But each G; has a
geometric distribution! Since the mean of that distribution is 1/p, we have that

E(N)=r- (4.39)

K=

In fact, those r geometric variables are also independent, so we know the variance of N is the sum
of their variances:

Var(N)=r-

(4.40)

4.4.1 R Functions

Relevant functions for a negative binomial distributed random variable X with success parameter
p are:
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dnbinom(i,size=1,prob=p), to find P(X =)

pnbinom(i,size=1,prob=p), to find P(X <=1)

gnbinom(q,sixe=1,prob=p), to find c such that P(X <¢) =¢q

rnbinom(n,size=1,prob=p), to generate n independent values of X

4.4.2 Example: Backup Batteries

A machine contains one active battery and two spares. Each battery has a 0.1 chance of failure
each month. Let L denote the lifetime of the machine, i.e. the time in months until the third
battery failure. Find P(L = 12).

The number of months until the third failure has a negative binomial distribution, with r = 3 and
p = 0.1. Thus the answer is obtained by (4.37), with k = 12:

P(L=12) = <121> (1-0.1)%.13 (4.41)

4.5 The Poisson Family of Distributions

Another famous parametric family of distributions is the set of Poisson Distributions.

This family is a little different from the geometric, binomial and negative binomial families, in
the sense that in those cases there were qualitative descriptions of the settings in which such
distributions arise. Geometrically distributed random variables, for example occur as the number
of Bernoulli trials needed to get the first success.

By contrast, the Poisson family does not really have this kind of qualitative descriptionﬂ It is
merely something that people have found to be a reasonably accurate model of actual data. We
might be interested, say, in the number of disk drive failures in periods of a specified length of time.
If we have data on this, we might graph it, and if it looks like the pmf form below, then we might
adopt it as our model.

The pmf is
e Mk

P(X=k) =~ k=012.. (4.42)

®Some such descriptions are possible in the Poisson case, but they are complicated and difficult to verify.
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It turns out that

EX =\ (4.43)

Var(X) =\ (4.44)

The derivations of these facts are similar to those for the geometric family in Section One
starts with the Maclaurin series expansion for e’:

el = Z il (4.45)

and finds its derivative with respect to t, and so on. The details are left to the reader.

The Poisson family is very often used to model count data. For example, if you go to a certain
bank every day and count the number of customers who arrive between 11:00 and 11:15 a.m., you
will probably find that that distribution is well approximated by a Poisson distribution for some A.

There is a lot more to the Poisson story than we see in this short section. We’ll return to this
distribution family in Section

4.5.1 R Functions

Relevant functions for a Poisson distributed random variable X with parameter lambda are:

dpois(i,Jambda), to find P(X = i)

ppois(i,Jambda), to find P(X <)

gpois(q,lambda), to find ¢ such that P(X <¢) =¢

rpois(n,lambda), to generate n independent values of X

4.6 The Power Law Family of Distributions

This family has attracted quite a bit of attention in recent years, due to its use in random graph
models.
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4.6.1 The Model

Here

px(k)=ck™, k=1,2,3,... (4.46)

It is required that v > 1, as otherwise the sum of probabilities will be infinite. For v satisfying that
condition, the value c is chosen so that that sum is 1.0:

(o)

L0=) ck 7~ c/oo kY dk=c/(y —1) (4.47)

k=1 1

soc~~y—1.
Here again we have a parametric family of distributions, indexed by the parameter ~.

The power law family is an old-fashioned model (an old-fashioned term for distribution is law),
but there has been a resurgence of interest in it in recent years. Analysts have found that many
types of social networks in the real world exhibit approximately power law behavior in their degree
distributions.

For instance, in a famous study of the Web (A. Barabasi and R. Albert, Emergence of Scaling in
Random Networks, Science, 1999, 509-512), degree distribution on the Web (a directed graph, with
incoming links being the ones of interest here) it was found that the number of links leading to a
Web page has an approximate power law distribution with v = 2.1. The number of links leading
out of a Web page was found to be approximately power-law distributed, with v = 2.7.

Much of the interest in power laws stems from their fat tails, a term meaning that values far
from the mean are more likely under a power law than they would be under a normal distribution
with the same mean. In recent popular literature, values far from the mean have often been called
black swans. The financial crash of 2008, for example, is blamed by some on the ignorance by
quants (people who develop probabilistic models for guiding investment) in underestimating the
probabilities of values far from the mean.

Some examples of real data that are, or are not, fit well by power law models are given in the
paper Power-Law Distributions in Empirical Data, by A. Clauset, C. Shalizi and M. Newman, at
http://arxiv.org/abs/0706.1062. Methods for estimating the parameter v are discussed and
evaluated.

A variant of the power law model is the power law with exponential cutoff, which essentially
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consists of a blend of the power law and a geometric distribution. Here

px(k) = ck™7g" (4.48)
This now is a two-parameter family, the parameters being v and q. Again c is chosen so that the
pmf sums to 1.0.

This model is said to work better than a pure power law for some types of data. Note, though,
that this version does not really have the fat tail property, as the tail decays exponentially now.

4.6.2 Further Reading

There is nice paper on fitting (or not fitting) power law models:

Power-Law Distributions in Empirical Data, SIAM Review, A. Clauset, C.R. Shalizi, and M.E.J.
Newman, 51(4), 661-703, 2009.

4.7 Recognizing Some Parametric Distributions When You See
Them

Three of the discrete distribution families we’ve considered here arise in settings with very definite
structure, all dealing with independent trials:

e the binomial family gives the distribution of the number of successes in a fixed number of
trials

e the geometric family gives the distribution of the number of trials needed to obtain the first
success

e the negative binomial family gives the distribution of the number of trials needed to obtain
the k" success

Such situations arise often, hence the fame of these distribution families.

By contrast, the Poisson and power law distributions have no underlying structure. They are
famous for a different reason, that it has been found empirically that they provide a good fit to
many real data sets.
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In other words, the Poisson and power law distributions are typically fit to data, in an attempt to
find a good model, whereas in the binomial, geometric and negative binomial cases, the fundamental
nature of the setting implies one of those distributions.

You should make a strong effort to get to the point at which you automatically rec-
ognize such settings when your encounter them.

4.8 Example: a Coin Game

Life is unfair—former President Jimmie Carter

Consider a game played by Jack and Jill. Each of them tosses a coin many times, but Jack gets a
head start of two tosses. So by the time Jack has had, for instance, 8 tosses, Jill has had only 6;
when Jack tosses for the 15" time, Jill has her 13" toss; etc.

Let X}, denote the number of heads Jack has gotten through his k** toss, and let Y}, be the head
count for Jill at that same time, i.e. among only k-2 tosses for her. (So, Y7 = Y5 = 0.) Let’s find
the probability that Jill is winning after the 6" toss, i.e. P(Ys > X¢).

Your first reaction might be, “Aha, binomial distribution!” You would be on the right track, but
the problem is that you would not be thinking precisely enough. Just WHAT has a binomial
distribution? The answer is that both X4 and Y have binomial distributions, both with p = 0.5,
but n = 6 for X while n = 4 for Y.

Now, as usual, ask the famous question, “How can it happen?” How can it happen that Y5 > Xg?
Well, we could have, for example, Y5 = 3 and Xg = 1, as well as many other possibilities. Let’s
write it mathematically:

4 -1

P(Ys > Xe) = » Y _ P(Ys =i and X = j) (4.49)
i=1 j=0

Make SURE your understand this equation.

Now, to evaluate P(Ys = i and Xg = j), we see the “and” so we ask whether Y5 and Xg are
independent. They in fact are; Jill’s coin tosses certainly don’t affect Jack’s. So,

P(Ys =i and Xg = j) = P(Yg = i) - P(Xg = j) (4.50)
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It is at this point that we finally use the fact that X and Yy have binomial distributions. We have

P(Ys=1i) = <?)0.5l’(1 —0.5)4 (4.51)
and
P(X¢=j) = <j>0'5j(1 —0.5)577 (4.52)

We would then substitute (4.51)) and (4.52) in (4.49). We could then evaluate it by hand, but it
would be more convenient to use R’s dbinom() function:

prob <- 0
for (i in 1:4)
for (j in 0:(i-1))
prob <- prob + dbinom(i,4,0.5) * dbinom(j,6,0.5)
print (prob)

We get an answer of about 0.17. If Jack and Jill were to play this game repeatedly, stopping each
time after the 6! toss, then Jill would win about 17% of the time.

4.9 Example: Tossing a Set of Four Coins

Consider a game in which we have a set of four coins. We keep tossing the set of four until we have
a situation in which exactly two of them come up heads. Let N denote the number of times we
must toss the set of four coins.

For instance, on the first toss of the set of four, the outcome might be HTHH. The second might
be TTTH, and the third could be THHT. In the situation, N = 3.

Let’s find P(N = 5). Here we recognize that N has a geometric distribution, with “success” defined
as getting two heads in our set of four coins. What value does the parameter p have here?

Well, p is P(X = 2), where X is the number of heads we get from a toss of the set of four coins.
We recognize that X is binomial! Thus

p= <;1>0.54 = g (4.53)
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Thus using the fact that N has a geometric distribution,

P(N =5) = (1—p)*p=0.057 (4.54)

4.10 Example: the ALOHA Example Again

As an illustration of how commonly these parametric families arise, let’s again look at the ALOHA
example. Consider the general case, with transmission probability p, message creation probability
q, and m network nodes. We will not restrict our observation to just two epochs.

Suppose X; = m, i.e. at the end of epoch i all nodes have a message to send. Then the number
which attempt to send during epoch i+1 will be binomially distributed, with parameters m and pF_;]
For instance, the probability that there is a successful transmission is equal to the probability that
exactly one of the m nodes attempts to send,

<T>p(1 —p)" =mp(l —p)"! (4.55)

Now in that same setting, X; = m, let K be the number of epochs it will take before some message
actually gets through. In other words, we will have X; = m, X;11 = m, X;10 = m,... but finally
Xivxk—1 = m — 1. Then K will be geometrically distributed, with success probability equal to
(14.55]).

There is no Poisson distribution in this example, but it is central to the analysis of Ethernet, and
almost any other network. We will discuss this at various points in later chapters.

4.11 Example: the Bus Ridership Problem Again

Recall the bus ridership example of Section [2.12] Let’s calculate some expected values, for instance
E(Bl ) .

E(Bl) :O-P(Bl :0)+1'P(B1 = 1)+2-P(B1 :2) =04+2-0.1 (4.56)

Now suppose the company charges $3 for passengers who board at the first stop, but charges $2
for those who join at the second stop. (The latter passengers get a possibly shorter ride, thus pay

SNote that this is a conditional distribution, given X; = m.
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less.) So, the total revenue from the first two stops is T'= 3B; + 2B5. Let’s find E(T). We’d write

E(T) = 3E(B)) + 2E(Bs) (4.57)

making use of (3.21)). We’d then compute the terms as in m

Suppose the bus driver has the habit of exclaiming, “What? No new passengers?!” every time he
comes to a stop at which B; = 0. Let N denote the number of the stop (1,2,...) at which this first
occurs. Find P(N = 3):

N has a geometric distribution, with p equal to the probability that there 0 new passengers at a
stop, i.e. 0.5. Thus py(3) = (1 — 0.5)20.5, by (4.3)).

Let S denote the number of stops, out of the first 6, at which 2 new passengers board. For example,
S would be 3 if Bl = 2, BQ = 2, B3 = 0, B4 = 1, B5 = 0, and Bﬁ = 2. Find ps(4)i

S has a binomial distribution, with n = 6 and p = probability of 2 new passengers at a stop = 0.1.
Then

ps(4) = <Z>0.14(1 —0.1)%1 (4.58)

By the way, we can exploit our knowledge of binomial distributions to simplify the simulation code
in Section 2.14.5l The lines

for (k in 1:passengers)
if (runif(1) < 0.2)
passengers <— passengers — 1

simulate finding that number of passengers that alight at that stop. But that number is binomially
distributed, so the above code can be compactified (and speeded up in execution) as

passengers <— passengers — rbinom(1,passengers ,0.2)

4.12 Multivariate Distributions

(I am borrowing some material here from Section for instructors or readers who skip Chapter
It is important to know that multivariate distributions exist, even if one doesn’t know the
details.)

Recall that for a single discrete random variable X, the distribution of X was defined to be a list
of all the values of X, together with the probabilities of those values. The same is done for a pair
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(or more than a pair) of discrete random variables U and V.

Suppose we have a bag containing two yellow marbles, three blue ones and four green ones. We
choose four marbles from the bag at random, without replacement. Let Y and B denote the number
of yellow and blue marbles that we get. Then define the two-dimensional pmf of Y and B to be

pv.p(i,j) = P(Y =iand B = j) = -1 =0 (4.59)

Here is a table displaying all the values of P(Y =i and B = j):

il,i— 0 1 2 3
0 | 0.002 | 0.024 | 0.036 | 0.008
1]0.162 | 0.073 | 0.048 | 0.004
2 10.012 | 0.024 | 0.006 | 0.000

So this table is the distribution of the pair (Y,B).

Recall further that in the discrete case, we introduced a symbolic notation for the distribution of
a random variable X, defined as px (i) = P(X = i), where i ranged over the support of X. We do
the same thing for a pair of random variables:

Definition 8 For discrete random variables U and V, their probability mass function is defined to
be

puv(i,j)=PU =i and V = j) (4.60)

where (i,j) ranges over all values taken on by (U, V). Higher-dimensional pmfs are defined similarly,
e.g.

puvw(i,j, k) =PU =i andV =j and W = k) (4.61)

So in our marble example above, py g(1,2) = 0.048, py,5(2,0) = 0.012 and so on.

4.13 Iterated Expectations

This section has an abstract title, but the contents are quite useful.
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4.13.1 Conditional Distributions
Just as we can define bivariate pmfs, we can also speak of conditional pmfs. Suppose we have
random variables U and V.

In our bus ridership example, for instance, we can talk about

E(Ly | B1 =0) (4.62)

In notebook terms, think of many replications of watching the bus during times 1 and 2. Then
(4.62) is defined to be the long-run average of values in the Lo column, among those rows in
which the B; column is 0. (And by the way, make sure you understand why (4.62)) works out to
be 0.6.)

4.13.2 The Theorem

The key relation says, in essence,

The overall mean of V is a weighted average of the conditional means of V given U. The
weights are the pmf of U.

Note again that E(V | U = ¢) is defined in “notebook” terms as the long-run average of V, among
those lines in which U = c.

Here is the formal version:

Suppose we have random variables U and V, with U discrete and with V having an expected value.
Then

E(V)=) PU=c)E(V|U=c (4.63)

where c ranges through the support of U.

In spite of its intimidating form, makes good intuitive sense, as follows: Suppose we want to
find the average height of all students at a university. Each department measures the heights of its
majors, then reports the mean height among them. Then says that to get the overall mean
in the entire school, we should take a weighted average of all the within-department means, with
the weights being the proportions of each department’s student numbers among the entire school.
Clearly, we would not want to take an unweighted average, as that would count tiny departments
just as much as large majors.
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Here is the derivation (reader: supply the reasons!).

EV = ) dPV =d)

id ZP(U:candV:d)

ZdZP P(V=d|U=¢)
ZZdP P(V=d|U=c¢)
ZZdP P(V=d|U=¢)
ZP =¢)) dP(V=d|U=c)

d

ZP E(V|U=¢)

4.13.3 Example: Coin and Die Game

(4.64)
(4.65)
(4.66)
(4.67)
(4.68)
(4.69)

(4.70)

You roll a die until it comes up 5, taking M rolls to do so. You then toss a coin M times, winning

one dollar for each head. Find the expected winnings, EW.

Solution: Given M = k, the number of heads has a binomial distribution with n = k and p = 0.5.

So

E(W|M = k) = 0.5k.

So, from (4.63), we have

ZPM kO5k—05ZP k)k=0.5 EM

from (3.13). And from (4.4, we know EM = 6. So, EW = 3.

Exercises

(4.71)

(4.72)

1. Consider a game in which one rolls a single die until one accumulates a total of at least four

dots. Let X denote the number of rolls needed. Find P(X < 2) and E(X).
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2. Recall the committee example in Section Suppose now, though, that the selection protocol
is that there must be at least one man and at least one woman on the committee. Find E(D) and
Var(D).

3. Suppose a bit stream is subject to errors, with each bit having probability p of error, and with
the bits being independent. Consider a set of four particular bits. Let X denote the number of
erroneous bits among those four.

(a) Find P(X = 2) and EX.

(b) What famous parametric family of distributions does the distribution of X belong to?

(c¢) LetY denote the maximum number of consecutive erroneous bits. Find P(Y = 2) and Var(Y).

4. Derive (4.12)).
5. Finish the computation in (4.18]).

6. Derive the facts that for a Poisson-distributed random variable X with parameter A\, EX =
Var(X) = X. Use the hints in Section

7. A civil engineer is collecting data on a certain road. She needs to have data on 25 trucks, and 10
percent of the vehicles on that road are trucks. State the famous parametric family that is relevant
here, and find the probability that she will need to wait for more than 200 vehicles to pass before
she gets the needed data.

8. In the ALOHA example:

(a) Find E(X;) and Var(X)), for the case p = 0.4, ¢ = 0.8. You are welcome to use quantities
already computed in the text, e.g. P(X; = 1) = 0.48, but be sure to cite equation numbers.

(b) Find P(collision during epoch 1) for general p, q.

9. Our experiment is to toss a nickel until we get a head, taking X rolls, and then toss a dime until
we get a head, taking Y tosses. Find:

(a) Var(X+Y).

(b) Long-run average in a “notebook” column labeled X?2.

10. Consider the game in Section Find E(Z) and Var(Z), where Z = Y5 — Xg.
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11. Say we choose six cards from a standard deck, one at a time WITHOUT replacement. Let NV
be the number of kings we get. Does N have a binomial distribution? Choose one: (i) Yes. (ii)
No, since trials are not independent. (iii) No, since the probability of success is not constant from
trial to trial. (iv) No, since the number of trials is not fixed. (v) (ii) and (iii). (iv) (ii) and (iv).
(vii) (iii) and (iv).

12. Suppose we have n independent trials, with the probability of success on the it* trial being p;.
Let X = the number of successes. Use the fact that “the variance of the sum is the sum of the
variance” for independent random variables to derive Var(X).

13. Prove Equation (3.41]).

14. Show that if X is a nonnegative-integer valued random variable, then

EX = iP(X > §) (4.73)

Hint: Write ¢ = Z}Zl 1, and when you see an iterated sum, reverse the order of summation.

15. Suppose we toss a fair coin n times, resulting in X heads. Show that the term expected value
is a misnomer, by showing that

lim P(X =n/2) =0 (4.74)

n—oo
Use Stirling’s approximation,
k k
k! =~ V2rk <> (4.75)
e

16. Suppose X and Y are independent random variables with standard deviations 3 and 4, respec-
tively.

(a) Find Var(X+Y).
(b) Find Var(2X+Y).

17. Fill in the blanks in the following simulation, which finds the approximate variance of N, the
number of rolls of a die needed to get the face having just one dot.

onesixth <- 1/6
sumn <- 0
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sumn2 <- 0

for (i in 1:10000) {
n<-0
while(TRUE) {

if ( < onesixth) break
}
sumn <- sumn + n
sumn2 <- sumn2 + n~2
}
approxvarn <-
cat("the approx. value of Var(N) is ",approxvarn,"\n")

18. Let X be the total number of dots we get if we roll three dice. Find an upper bound for
P(X > 15), using our course materials.

19. Suppose X and Y are independent random variables, and let Z = XY. Show that Var(Z) =
E(X*)E(Y?) - [E(X)PE(Y)?.

20. This problem involves a very simple model of the Web. (Far more complex ones exist.)

Suppose we have n Web sites. For each pair of sites i and j, ¢ # j, there is a link from site i to site j
with probability p, and no link (in that direction) with probability 1-p. Let NN; denote the number
of sites that site i is linked to; note that N; can range from 0 to n-1. Also, let M;; denote the
number of outgoing links that sites i and j have in common, not counting the one between them, if
any. Assume that each site forms its outgoing links independently of the others.

Say n = 10, p = 0.2. Find the following:

Note: There are some good shortcuts in some of these problems, making the work much easier.
But you must JUSTIFY your work.

21. Let X denote the number of heads we get by tossing a coin 50 times. Consider Chebychev’s
Inequality for the case of 2 standard deviations. Compare the upper bound given by the inequality
to the exact probability.

22. Suppose the number N of cars arriving during a given time period at a toll booth has a
Poisson distribution with parameter A\. Each car has a probability p of being in a car pool. Let
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M be the number of car-pool cars that arrive in the given period. Show that M also has a Poisson
distribution, with parameter pA. (Hint: Use the Maclaurin series for e®.)

23. Consider a three-sided die, as on page Let X denote the number of dots obtained in one
roll.

(a) (10) State the value of px(2).
(b) (10) Find EX and Var(X).

(c) (15) Suppose you win $2 for each dot. Find EW, where W is the amount you win.

24. Consider the parking space problem in Section Find Var(M), where M is the number of
empty spaces in the first block, and Var(D).

25. Suppose X and Y are independent, with variances 1 and 2, respectively. Find the value of ¢
that minimizes Var[cX + (1-¢)Y].

26. In the cards example in Section [2.15.1] let H denote the number of hearts. Find EH and
Var(H).

27. In the bank example in Section suppose you observe the bank for n days. Let X denote the
number of days in which at least 2 customers entered during the 11:00-11:15 observation period.
Find P(X = k).

28. Find E(X3), where X has a geometric distribution with parameter p.

29. Supppose we have a nonnegative random variable X, and define a new random variable Y,
which is equal to X if X > 8 and equal to 0 otherwise. Assume X takes on only a finite number of
values (just a mathematical nicety, not really an issue). Which one of the following is true:

(i) EY < EX.

(i) BY > EX.

(iii) Either of EY and EX could be larger than the other, depending on the situation.
(iv) EY is undefined.

30. Say we roll two dice, a blue one and a yellow one. Let B and Y denote the number of dots we
get, respectively, and write S = B 4+ Y. Now let G denote the indicator random variable for the
event S = 2. Find E(G).

31. Consider the ALOHA example, Section . Write a call to the built-in R function dbinomy()
to evaluate (4.55)) for general m and p.
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32. Consider the bus ridership example, Section Suppose upon arrival to a certain stop, there
are 2 passengers. Let A denote the number of them who choose to alight at that stop.

(a) State the parametric family that the distribution of A belongs to.

(b) Find pa(1) and Fa(1), writing each answer in decimal expression form e.g. 12%-0.32+0.3333.
33. Suppose you have a large disk farm, so heavily used that the lifetimes L are measured in
months. They come from two different factories, in proportions q and 1-q. The disks from factory

i have geometrically distributed lifetime with parameter p;, i = 1,2. Find Var(L) in terms of q and
the Di-
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Chapter 5

Pause to Reflect

Now that we have some basics, let’s step back a bit, and think about what we’ve learned.

5.1 A Cautionary Tale

Intuition is great, but it can lead you astray! The example in this section shows how things can go
wrong.

5.1.1 Trick Coins, Tricky Example

Suppose we have two trick coins in a box. They look identical, but one of them, denoted coin 1, is
heavily weighted toward heads, with a 0.9 probability of heads, while the other, denoted coin 2, is
biased in the opposite direction, with a 0.9 probability of tails. Let Cy and Cs denote the events
that we get coin 1 or coin 2, respectively.

Our experiment consists of choosing a coin at random from the box, and then tossing it n times.
Let B; denote the outcome of the " toss, i = 1,2,3,..., where B; = 1 means heads and B; = 0
means tails. Let X; = By + ... + B;, so X; is a count of the number of heads obtained through the
th

17" toss.

The question is: “Does the random variable X; have a binomial distribution?” Or, more simply,
the question is, “Are the random variables B; independent?” To most people’s surprise, the answer
is No (to both questions). Why not?

The variables B; are indeed 0-1 variables, and they have a common success probability. But they
are not independent! Let’s see why they aren’t.

99
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Consider the events A; = {B; = 1}, i = 1,2,3,... In fact, just look at the first two. By definition,
they are independent if and only if

P(Al and AQ) = P(Al)P(AQ) (51)

First, what is P(A4;)? Now, wait a minute! Don’t answer, “Well, it depends on which coin
we get,” because this is NOT a conditional probability. Yes, the conditional probabilities P(A;|C1)
and P(A1|C2) are 0.9 and 0.1, respectively, but the unconditional probability is P(A;) = 0.5. You
can deduce that either by the symmetry of the situation, or by

P(A;) = P(C1)P(A1|Cy) + P(C2)P(A1]|C2) = (0.5)(0.9) + (0.5)(0.1) = 0.5 (5.2)

You should think of all this in the notebook context. Each line of the notebook would consist
of a report of three things: which coin we get; the outcome of the first toss; and the outcome of
the second toss. (Note by the way that in our experiment we don’t know which coin we get, but
conceptually it should have a column in the notebook.) If we do this experiment for many, many
lines in the notebook, about 90% of the lines in which the coin column says “1” will show Heads
in the second column. But 50% of the lines overall will show Heads in that column.

So, the right hand side of Equation (|5.1)) is equal to 0.25. What about the left hand side?

P(A; and A3) = P(A; and Az and C) + P(A; and Ay and Cs) (5.3)
= P(A; and A3|C1)P(Ch) + P(A; andAs|C2) P(Cs) (5.4)
= (0.9)%(0.5) + (0.1)*(0.5) (5.5)
= 041 (5.6)

Well, 0.41 is not equal to 0.25, so you can see that the events are not independent, contrary to our
first intuition. And that also means that X; is not binomial.

5.1.2 Intuition in Retrospect

To get some intuition here, think about what would happen if we tossed the chosen coin 10000
times instead of just twice. If the tosses were independent, then for example knowledge of the first
9999 tosses should not tell us anything about the 10000th toss. But that is not the case at all.
After 9999 tosses, we are going to have a very good idea as to which coin we had chosen, because
by that time we will have gotten about 9000 heads (in the case of coin Cj) or about 1000 heads
(in the case of C9). In the former case, we know that the 10000th toss is likely to be a head, while
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in the latter case it is likely to be tails. In other words, earlier tosses do indeed give us
information about later tosses, so the tosses aren’t independent.

5.1.3 Implications for Modeling

The lesson to be learned is that independence can definitely be a tricky thing, not to be assumed
cavalierly. And in creating probability models of real systems, we must give very, very careful
thought to the conditional and unconditional aspects of our models—-it can make a huge difference,
as we saw above. Also, the conditional aspects often play a key role in formulating models of
nonindependence.

This trick coin example is just that—tricky—but similar situations occur often in real life. If in some
medical study, say, we sample people at random from the population, the people are independent
of each other. But if we sample families from the population, and then look at children within the
families, the children within a family are not independent of each other.

5.2 What About “Iterated Variance”?

In analogy to (4.63]), one would think that
Var(V) = ZP(U =c) Var(V|U =¢) (5.7)

In terms of the student heights example above, this wouldn’t make sense, because it doesn’t take into
account the variation in means from one department to another. (This matter, because Var(V) =
E[(V — EV)?].) So, it’s not surprising that another term must be added to (5.7). This topic is
discussed in Section ??, but for now the point is that although good intuition is essential, we must
not overrely on it..

5.3 Why Not Just Do All Analysis by Simulation?

Now that computer speeds are so fast, one might ask why we need to do mathematical probability
analysis; why not just do everything by simulation? There are a number of reasons:

e Even with a fast computer, simulations of complex systems can take days, weeks or even
months.

e Mathematical analysis can provide us with insights that may not be clear in simulation.
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e Like all software, simulation programs are prone to bugs. The chance of having an uncaught
bug in a simulation program is reduced by doing mathematical analysis for a special case of
the system being simulated. This serves as a partial check.

e Statistical analysis is used in many professions, including engineering and computer science,
and in order to conduct meaningful, useful statistical analysis, one needs a firm understanding
of probability principles.

An example of that second point arose in the computer security research of a graduate student at
UCD, Senthilkumar Cheetancheri, who was working on a way to more quickly detect the spread
of a malicious computer worm. He was evaluating his proposed method by simulation, and found
that things “hit a wall” at a certain point. He wasn’t sure if this was a real limitation; maybe, for
example, he just wasn’t running his simulation on the right set of parameters to go beyond this
limit. But a mathematical analysis showed that the limit was indeed real.

5.4 Reconciliation of Math and Intuition (optional section)

Here is a more theoretical definition of probability, as opposed to the intuitive “notebook” idea in
this book. The definition is an abstraction of the notions of events (the sets A in W below) and
probabilities of those events (the values of the function P(A)):

Definition 9 Let S be a set, and let W be a collection of subsets of S. Let P be a real-valued
function on W. Then S, W and P form a probability space if the following conditions hold:

o P(S)=1.

e SeW.

o W is closed under complements (if a set is in W, then the set’s complement with respect to
S is in W too) and under unions of countably many members of W.

e P(A) >0 for any A in W.

If Ay, As, ... € W and the A; are pairwise disjoint, then

P(Uidi) = ) | P(A) (58)

A random variable is any function X : S — R[]

!The function must also have a property called measurability, which we will not discuss here.
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Using just these simple axioms, one can prove (with lots of heavy math) theorems like the Strong
Law of Large Numbers:

Theorem 10 Consider a random wvariable U, and a sequence of independent random variables
Ui,Us, ... which all have the same distribution as U, Then

lim —— =

n—o0 n

E(U) with probability 1 (5.9)
In other words, the average value of U in all the lines of the notebook will indeed converge to EU.

Exercises

1. Consider a game in which one rolls a single die until one accumulates a total of at least four
dots. Let X denote the number of rolls needed. Find P(X < 2) and E(X).

2. Recall the committee example in Section Suppose now, though, that the selection protocol
is that there must be at least one man and at least one woman on the committee. Find F(D) and
Var(D).

3. Suppose a bit stream is subject to errors, with each bit having probability p of error, and with
the bits being independent. Consider a set of four particular bits. Let X denote the number of
erroneous bits among those four.

(a) Find P(X = 2) and EX.
(b) What famous parametric family of distributions does the distribution of X belong to?

(c¢) LetY denote the maximum number of consecutive erroneous bits. Find P(Y = 2) and Var(Y).

4. Derive (4.12)).
5. Finish the computation in (4.18]).

6. Derive the facts that for a Poisson-distributed random variable X with parameter A\, EX =
Var(X) = A. Use the hints in Section

7. A civil engineer is collecting data on a certain road. She needs to have data on 25 trucks, and 10
percent of the vehicles on that road are trucks. State the famous parametric family that is relevant
here, and find the probability that she will need to wait for more than 200 vehicles to pass before
she gets the needed data.

8. In the ALOHA example:
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(a) Find E(X;) and Var(Xy), for the case p = 0.4, ¢ = 0.8. You are welcome to use quantities
already computed in the text, e.g. P(X; = 1) = 0.48, but be sure to cite equation numbers.

(b) Find P(collision during epoch 1) for general p, q.

9. Our experiment is to toss a nickel until we get a head, taking X rolls, and then toss a dime until
we get a head, taking Y tosses. Find:

(a) Var(X+Y).

(b) Long-run average in a “notebook” column labeled X?2.

10. Consider the game in Section Find E(Z) and Var(Z), where Z = Y5 — Xg.

11. Say we choose six cards from a standard deck, one at a time WITHOUT replacement. Let N
be the number of kings we get. Does N have a binomial distribution? Choose one: (i) Yes. (ii)
No, since trials are not independent. (iii) No, since the probability of success is not constant from
trial to trial. (iv) No, since the number of trials is not fixed. (v) (ii) and (iii). (iv) (ii) and (iv).
(vii) (iii) and (iv).

12. Suppose we have n independent trials, with the probability of success on the it trial being p;.
Let X = the number of successes. Use the fact that “the variance of the sum is the sum of the
variance” for independent random variables to derive Var(X).

13. Prove Equation (3.41]).

14. Show that if X is a nonnegative-integer valued random variable, then

o0
EX =) P(X >i) (5.10)
i=1
Hint: Write ¢ = Z;Zl 1, and when you see an iterated sum, reverse the order of summation.
15. Suppose we toss a fair coin n times, resulting in X heads. Show that the term expected value
is a misnomer, by showing that

lim P(X =n/2) =0 (5.11)

n—oo

Use Stirling’s approximation,

k k
k! ~ V2rk () (5.12)
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16. Suppose X and Y are independent random variables with standard deviations 3 and 4, respec-
tively.

(a) Find Var(X+Y).
(b) Find Var(2X+Y).

17. Fill in the blanks in the following simulation, which finds the approximate variance of N, the
number of rolls of a die needed to get the face having just one dot.

onesixth <- 1/6

sumn <- 0

sumn2 <- 0

for (i in 1:10000) {
n<-0
while(TRUE) {

if ( < onesixth) break
}
sumn <- sumn + n
sumn2 <- sumn2 + n~2

}
approxvarn <-
cat("the approx. value of Var(N) is ",approxvarn,"\n")

18. Let X be the total number of dots we get if we roll three dice. Find an upper bound for
P(X > 15), using our course materials.

19. Suppose X and Y are independent random variables, and let Z = XY. Show that Var(Z) =
E(X*)E(Y?) - [E(X)P[E(Y)?

20. This problem involves a very simple model of the Web. (Far more complex ones exist.)

Suppose we have n Web sites. For each pair of sites i and j, ¢ # j, there is a link from site i to site j
with probability p, and no link (in that direction) with probability 1-p. Let NV; denote the number
of sites that site i is linked to; note that N; can range from 0 to n-1. Also, let M;; denote the
number of outgoing links that sites i and j have in common, not counting the one between them, if
any. Assume that each site forms its outgoing links independently of the others.

Say n = 10, p = 0.2. Find the following:

(a) P(N1=3)
(b) P(N1 =3 and N2 = 2)
(¢) Var(Ny)
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(d) Var(Nl + Nz)

(e) P(Mz=4)
Note: There are some good shortcuts in some of these problems, making the work much easier.
But you must JUSTIFY your work.

21. Let X denote the number of heads we get by tossing a coin 50 times. Consider Chebychev’s
Inequality for the case of 2 standard deviations. Compare the upper bound given by the inequality
to the exact probability.

22. Suppose the number N of cars arriving during a given time period at a toll booth has a
Poisson distribution with parameter \. Each car has a probability p of being in a car pool. Let
M be the number of car-pool cars that arrive in the given period. Show that M also has a Poisson
distribution, with parameter pA. (Hint: Use the Maclaurin series for e*.)

23. Consider a three-sided die, as on page Let X denote the number of dots obtained in one
roll.

(a) (10) State the value of px(2).
(b) (10) Find EX and Var(X).

(c) (15) Suppose you win $2 for each dot. Find EW, where W is the amount you win.

24. Consider the parking space problem in Section Find Var(M), where M is the number of
empty spaces in the first block, and Var(D).

25. Suppose X and Y are independent, with variances 1 and 2, respectively. Find the value of ¢
that minimizes Var[cX + (1-¢)Y].

26. In the cards example in Section [2.15.1] let H denote the number of hearts. Find EH and
Var(H).

27. In the bank example in Section suppose you observe the bank for n days. Let X denote the
number of days in which at least 2 customers entered during the 11:00-11:15 observation period.
Find P(X = k).

28. Find E(X3), where X has a geometric distribution with parameter p.

29. Supppose we have a nonnegative random variable X, and define a new random variable Y,
which is equal to X if X > 8 and equal to 0 otherwise. Assume X takes on only a finite number of
values (just a mathematical nicety, not really an issue). Which one of the following is true:

(i) EY < EX.
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(i) BY > EX.
(iii) Either of FY and EX could be larger than the other, depending on the situation.

(iv) EY is undefined.

30. Say we roll two dice, a blue one and a yellow one. Let B and Y denote the number of dots we
get, respectively, and write S = B + Y. Now let G denote the indicator random variable for the
event S = 2. Find E(G).

31. Consider the ALOHA example, Section . Write a call to the built-in R function dbinomy()
to evaluate (4.55)) for general m and p.

32. Consider the bus ridership example, Section Suppose upon arrival to a certain stop, there
are 2 passengers. Let A denote the number of them who choose to alight at that stop.

(a) State the parametric family that the distribution of A belongs to.

(b) Find p4(1) and F(1), writing each answer in decimal expression form e.g. 12%-0.32+0.3333.
33. Suppose you have a large disk farm, so heavily used that the lifetimes L are measured in
months. They come from two different factories, in proportions q and 1-q. The disks from factory

i have geometrically distributed lifetime with parameter p;, i = 1,2. Find Var(L) in terms of q and
the Pi-
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Chapter 6

Introduction to Discrete Markov
Chains

(From this point onward, we will be making heavy use of linear algebra. The reader may find it
helpful to review Appendix [B])

Here we introduce Markov chains, a topic covered in much more detail in Chapter ?7?.

The basic idea is that we have random variables X7, X3, ..., with the index representing time. Each
one can take on any value in a given set, called the state space; X, is then the state of the system
at time n. The state space is assumed either finite or countably inﬁniteE]

We sometimes also consider an initial state, Xy, which might be modeled as either fixed or random.
However, this seldom comes into play.

The key assumption is the Markov property, which in rough terms can be described as:

The probabilities of future states, given the present state and the past state, depends
only on the present state; the past is irrelevant.

In formal terms:

P(Xii1 = s441| Xt = 56, X4 1 = 5¢-1,..., Xo = 50) = P(X¢y1 = 5¢41| Xy = 5¢) (6.1)

!The latter is a mathematical term meaning, in essence, that it is possible to denote the space using integer
subscripts. It can be shown that the set of all real numbers is not countably infinite, though perhaps surprisingly the
set of all rational numbers s countably infinite.

109
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Note that in , the two sides of the equation are equal but their common value may depend
on t. We assume that this is not the case; nondependence on t is known as stationarityﬁ For
instance, the probability of going from state 2 to state 5 at time 29 is assumed to be the same as
the corresponding probability at time 333.

6.1 Matrix Formulation

We define p;; to be the probability of going from state i to state j in one time step; note that this
is a conditional probability, i.e. P(X,4+1 = J | X, = i). These quantities form a matrix PE| whose
row i, column j element is p;;, which is called the transition matrix. Each row of P must sum to
1 (do you see why?).

For example, consider a three-state Markov chain with transition matrix

(6.2)

|

Il
NN
oNI= O
O I

This means that if we are now at state 1, the probabilities of going to states 1, 2 and 3 are 1/2,
0 and 1/2, respectively. Note that each row’s probabilities must sum to 1—after all, from any
particular state, we must go somewhere.

Actually, the m** power, P™, of the transition matrix gives the probabilities for m-step transitions.
In other words, the (i,j) element of P is P(X;yy, = j|X; = ). This is clear for the case m = 2
(after which one can use mathematical induction), as follows.

As usual, “break big events down into small events.” How can it happen that X; o = j7 Well,
break things down according to where we might go first after leaving i. We might go from i to 1,
say, then from 1 to j. So,

P(Xpyo =jIXi =) =) pik Prj (6.3)
k

In view of the rule for multiplying matrices, the expression on the right-hand side is simply the (i,j)
element of P?!

2Not to be confused with the notion of a stationary distribution, coming below.

3Unfortunately, we have some overloading of symbols here. Both in this book and in the field in general, we
usually use the letter P to denote this matrix, yet we continue to denote probabilities by P( ). However, it will be
clear from context which we mean. The same is true for our transition probabilities p;;, which use a subscripted
letter p, which is also the case for probably mass functions.



© 00 O Ot W

[ Y = T
=W N = O

6.2. EXAMPLE: DIE GAME 111
6.2 Example: Die Game

As our first example of Markov chains, consider the following game. One repeatedly rolls a die,
keeping a running total. Each time the total exceeds 10, we receive one dollar, and continue playing,
resuming where we left off, mod 10. Say for instance we have a total of 8, then roll a 5. We receive
a dollar, and now our total is 3.

It will simplify things if we assume that the player starts with one free point.

This process clearly satisfies the Markov property, with our state being our current total. If our
current total is 6, for instance, then the probability that we next have a total of 9 is 1/6, regardless
of what happened our previous rolls. We have pas, pr2 and so on all equal to 1/6, while for instance
pog = 0. Here’s the code to find the transition matrix P:

# 10 states, so 10x10 matrix
# since most elements will be 0Os, set them all to 0 first,
# then replace those that should be nonzero
p <— matrix(rep(0,100),nrow=10)
onesixth <— 1/6
for (i in 1:10) { # look at each row
# since we are rolling a die, there are only 6 possible states we
# can go to from i, so check these
for (j in 1:6) {
k<— 1+ ] # new total, but did we win?
if (k> 10) k <— k — 10
pl[i,k] <— onesixth

Note that since we knew that many entries in the matrix would be zero, it was easier just to make
them all 0 first, and then fill in the nonzero ones.

6.3 Long-Run State Probabilities

Let N;; denote the number of times we have visited state i during times 1,...,t. For instance, in the
die game, Ng 22 would be the number of rolls among the first 22 that resulted in our having a total
of 8.
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Then as discussed in Section 7?7, in typical applications

. N;
m; = lim
t—oo t

(6.4)

exists for each state i. Under a couple more conditionsﬁ we have the stronger result,

lim P(X, =i) = (6.5)

t—o0

These quantities m; are typically the focus of analyses of Markov chains.

We will use the symbol 7 to name the column vector of all the ;:

7= (m,ma,...) (6.6)

where / means matrix transpose.

6.3.1 Stationary Distribution

The m; are called stationary probabilities, because if the initial state Xy is a random variable
with that distribution, then all X; will have that distribution. Here’s why:

Using ((6.5)), we have

T = nh—>HoloP(Xn =1) (6.7)
= lim Y P(Xu1 =) pis (6.8)

K
= > T i (6.9)
K

SO, if P(X[) == Z) = T4, then

4Basically, we need the chain to not be periodic. Consider a random walk, for instance: We start at position 0
on the number line, at time 0. The states are the integers. (So, this chain has an infinite state space.) At each time,
we flip a coin to determine whether to move right (heads) or left (tails) 1 unit. A little thought shows that if we start
at 0, the only times we can return to 0 are even-number times, i.e. P(X, =0 |Xo = 0) for all odd numbers n. This
is a periodic chain. By the way, turns out to be 0 for this chain.
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P(X1=i) = ) P(Xo=k)pn (6.10)
k

= > T Dri (6.11)
k

= m (6.12)

this last using . So, if X has distribution 7, then the same will be true for X, and contiuing
in this manner we see that Xs, X3, ... will all have that distribution, thus demostrating the claimed
stationary property for .

Of course, (6.7) holds for all states i. So in matrix terms, (6.7]) says
' =7'P (6.13)

6.3.2 Calculation of 7

Equation (6.13]) then shows us how to find the m;, at least in the case of finite state spaces, the
subject of this section here, as follows.

First, rewrite (6.13))

(I-P)r=0 (6.14)

Here I is the n x n identity matrix (for a chain with n states), and again ’ denotes matrix transpose.

This equation has infinitely many solutions; if 7 is a solution, then so for example is 8. Moreover,
the equation shows that the matrix there, I — P’, cannot have an inverse; if it did, we could multiply
both sides by the inverse, and find that the unique solution is m = 0, which can’t be right. This
says in turn that the rows of I — P’ are not linearly independent.

The latter fact is quite important, for the following reason. Recall the close connection of matrix
inverse and systems of linear equations. , a matrix equation, represents a system of n linear
equations in n unknowns, the latter being 71, mo, .., m,. So, the lack of linear independence of the
rows of I — P’ means, in plain English, that at least one of those equations is redundant.

But we need n independent equations, and fortunately one is available:

Y m=1 (6.15)
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Note that (6.15)) can be written as

Orn=1 (6.16)

where O is a vector of n 1s. Excellent, let’s use it!

So, again, thinking of as a system of linear equations, let’s replace the last equation by .
Switching back to the matrix view, that means that we replace the last row in the matrix I — P’
in by O’, and correspondingly replace the last element of the right-side vector by 1. Now
we have a nonzero vector on the right side, and a full-rank (i.e. invertible) matrix on the left side.
This is the basis for the following code, which we will use for finding .

findpil <— function(p) {
n <— nrow(p)
# find I-P’
imp <— diag(n) — t(p)
# replace the last row of I-P’ as discussed
imp[n,] <— rep(1l,n)
# replace the corresponding element of the
# right side by (the scalar) 1
rhs <— c(rep(0,n—1),1)
# now use R’s built—in solve()
solve (imp, rhs)

6.3.2.1 Example: 7 in Die Game

Consider the die game example above. Guess what! Applying the above code, all the 7; turn out
to be 1/10. In retrospect, this should be obvious. If we were to draw the states 1 through 10 as a
ring, with 1 following 10, it should be clear that all the states are completely symmetric.

6.3.2.2 Another Way to Find =

Here is another way to compute w. It is not commonly used, but it will also help illustrate
some of the concepts.

Suppose ((6.5) holds. Recall that P™ is the m-step transition matrix, so that for instance row 1 of
that matrix is the set of probabilities of going from state 1 to the various states in m steps. The
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same will be true for row 2 and so on. Putting that together with (6.5)), we have that

lim P" =TI (6.17)

n—oo

where the n x n matrix II has each of its rows equal to 7’.

We can use this to find 7. We take P to a large power m, and then each of the rows will approximate
. In fact, we can get an even better appoximation by averaging the rows.

Moreover, we can save a lot of computation by noting the following. Say we want the 16" power

of P. We could set up a loop with 15 iterations, building up a product. But actually we can do it
with just 4 iterations. We first square P, yielding P?. But then we square that, yielding P4. Square
twice more, yielding P® and finally P'®. This is especially fast on a GPU (graphics processing
unit).

# finds stationary probabilities of a Markov chain wusing matrix powers

altfindpi <— function(p,k) {
niters <— ceiling(log2(k))
prd <— p
for (i in 1l:niters) {
prd <— prd %% prd
}

colMeans (prd)

This approach has the advantage of being easy to parallelize, unlike matrix inversion.

6.4 Example: 3-Heads-in-a-Row Game

How about the following game? We keep tossing a coin until we get three consecutive heads. What
is the expected value of the number of tosses we need?

We can model this as a Markov chain with states 0, 1, 2 and 3, where state i means that we have
accumulated i consecutive heads so far. If we simply stop playing the game when we reach state 3,
that state would be known as an absorbing state, one that we never leave.

We could proceed on this basis, but to keep things elementary, let’s just model the game as being
played repeatedly, as in the die game above. You’'ll see that that will still allow us to answer the
original question. Note that now that we are taking that approach, it will suffice to have just three
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states, 0, 1 and 2; there is no state 3, because as soon as we win, we immediately start a new game,
in state 0.

6.4.1 Markov Analysis

Clearly we have transition probabilities such as po1, p12, p1o and so on all equal to 1/2. Note from
state 2 we can only go to state 0, so pag = 1.

Here’s the code below. Of course, since R subscripts start at 1 instead of 0, we must recode our
states as 1, 2 an 3.

p <~ matrix(rep(0,9),nrow=3)
pl1,1] <- 0.5

pl1,2] <- 0.5

pl2,3] <- 0.5

pl2,1] <- 0.5

pl3,1] <- 1

findpil(p)

It turns out that

7 = (0.5714286,0.2857143,0.1428571) (6.18)

So, in the long run, about 57.1% of our tosses will be done while in state 0, 28.6% while in state 1,
and 14.3% in state 2.

Now, look at that latter figure. Of the tosses we do while in state 2, half will be heads, so half will
be wins. In other words, about 0.071 of our tosses will be wins. And THAT figure answers our
original question, through the following reasoning;:

Think of, say, 10000 tosses. There will be about 710 wins sprinkled among those 10000 tosses.
Thus the average number of tosses between wins will be about 10000/710 = 14.1. In other words,
the expected time until we get three consecutive heads is about 14.1 tosses.

6.5 A Modified Notebook Analysis

Our previous notebook analysis (and most of our future ones, other than for Markov chains), relied
on imagining performing many independent replications of the same experiment.
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6.5.1 A Markov-Chain Notebook

Consider Table for instance. There our experiment was to watch the network during epochs 1
and 2. So, on the first line of the notebook, we would watch the network during epochs 1 and 2
and record the result. On the second line, we watch a new, independent replication of the network
during epochs 1 and 2, and record the results.

But instead of imagining a notebook recording infinitely many replications of the two epochs, we
could imagine watching just one replication but over infinitely many epochs. We’'d watch the
network during epoch 1, epoch 2, epoch 3 and so on. Now one line of the notebook would record
one epoch.

For general Markov chains, each line would record one time step. We would have columns of the
notebook labeled n and X,,. The reason this approach would be natural is (6.4). In that context,
m; would be the long-run proportion of notebook lines in which X,, = 1.

6.5.2 Example: 3-Heads-in-a-Row Game

For instance, consider the 3-heads-in-a-row game. Then (6.18]) says that about 57% of the notebook
lines would have a 0 in the X, column, with about 29% and 14% of the lines showing 1 and 2,
respectively.

Moreover, suppose we also have a notebook column labeled Win, with an entry Yes in a certain
line meaning, yes, that coin flip resulted in a win, with a No entry meaning no win. Then the mean
time until a win, which we found to be 14.1 above, would be described in notebook terms as the
long-run average number of lines between Yes entries in the Win column.

6.6 Simulation of Markov Chains

Following up on Section recall that our previous simulations have basically put into code
form our notebook concept. Our simulations up until now have been based on the definition of
probability, which we had way back in Section Our simulation code modeled the notebook
independent replications notion. We can do a similar thing now, based on the ideas in Section

In a time series kind of situation such as Markov chains, since we are interested in long-run behavior
in the sense of time, our simulation is based on (6.5)). In other words, we simulate the evolution of
X, as n increases, and take long-run averages of whatever is of interest.

Here is simulation code for the example in Section [6.4] caculating the approximate value of the
long-run time between wins (found to be about 14.1 by mathematical means above):
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# simulation of 8—in—a—row coin toss gaem

threeinrow <— function(ntimesteps) {
consec <— 0 # number of consec Hs
nwins <— 0 # number of wins
wintimes <— 0 # total of times to win
startplay <— 0 # time step 0
for (i in l:ntimesteps) {
if (toss() = 'H’) {
consec <— consec + 1
if (consec = 3) {
nwins <— nwins + 1
wintimes <—
wintimes + i — startplay
consec <— 0
startplay <— i
}

} else consec <— 0

}

wintimes / nwins

}

toss <— function ()
if (runif(l) < 0.5) 'H’ else T’

6.7 Example: ALOHA

Consider our old friend, the ALOHA network model. (You may wish to review the statement of the
model in Section before continuing.) The key point in that system is that it was “memoryless,”
in that the probability of what happens at time k41 depends only on the state of the system at
time k.

For instance, consider what might happen at time 6 if X5 = 2. Recall that the latter means that
at the end of epoch 5, both of our two network nodes were active. The possibilities for Xg are then

e Xg will be 2 again, with probability p? + (1 — p)?

e X will be 1, with probability 2p(1 — p)
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The central point here is that the past history of the system—i.e. the values of X1, X5, X3, and X;—
don’t have any impact. We can state that precisely:

The quantity

P(Xe = j| X1 = i1, Xo = @9, X3 = i3, X4 = 14, X5 = 1) (6.19)

does not depend on i,,, m = 1, ...,4. Thus we can write (6.19)) simply as P(Xgs = j| X5 =

Furthermore, that probability is the same as P(Xg9 = j|Xg = i) and in general P(X;11 = j| X = 1).
So, we do have a Markov chain.

Since this is a three-state chain, the p;; form a 3x3 matrix:

(1-¢?*+2¢1—qp 2¢(1—q)(1—p)+2¢*°p(1—p) ¢*[p*+ (1 —p)?]
P = (1—q)p 2qp(L—p)+(1—q)(1—p)  q[p*+ (1—p)? (6.20)
0 2p(1 — p) p?+ (1—p)?

For instance, the element in row 0, column 2, pg2, is ¢%[p? + (1 — p)?], reflecting the fact that to go
from state 0 to state 2 would require that both inactive nodes become active (which has probability
¢?, and then either both try to send or both refrain from sending (probability p? + (1 — p)?.

For the ALOHA example here, with p = 0.4 and q = 0.3, the solution is 7y = 0.47, 7 = 0.43 and
mo = 0.10.

So we know that in the long run, about 47% of the epochs will have no active nodes, 43% will have
one, and 10% will have two. From this we see that the long-run average number of active nodes is

0-047+1-043+2-0.10=0.63 (6.21)

By the way, note that every row in a transition matrix must sum to 1. (The probability that we
go from state i to somewhere is 1, after all, so we must have Zj pij = 1.) That implies that we can
save some work in writing R code; the last column must be 1 minus the others. In our example
above, we would write

transmat <- matrix(rep(0,9),nrow=3)

pl<-1-p

ql <- 1 -¢q

transmat[1,1] <- q172 + 2 * g * gl *p

transmat[1,2] <- 2 * q * q1 * pl + 2 * "2 * p * pl
transmat[2,1] <- ql * p
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transmat[2,2] <- 2 * q * p * pl + g1 * pl
transmat[3,1] <- 0

transmat[3,2] <- 2 * p * pl

transmat[,3] <- 1 - p[,1] - p[,2]
findpil(transmat)

Note the vectorized addition and recycling (Section [2.14.2]).

6.8 Example: Bus Ridership Problem

Consider the bus ridership problem in Section Make the same assumptions now, but add a
new one: There is a maximum capacity of 20 passengers on the bus.

The random variables L;, i = 1,2,3,... form a Markov chain. Let’s look at some of the transition
probabilities:

poo = 0.5 (6.22)

po1 = 0.4 (6.23)
p11=(1-0.2)-05+0.2-04 (6.24)
P20 = (0.2)%(0.5) = 0.02 (6.25)

p20.20 = (0.8)2°(0.5 + 0.4 + 0.1) + <210> (0.2)1(0.8)2°71(0.4 + 0.1) + (22()) (0.2)%(0.8)'8(0.1) (6.26)

(Note that for clarity, there is a comma in pag 20, as pag20 would be confusing and in some other
examples even ambiguous. A comma is not necessary in pi1, since there must be two subscripts;
the 11 here can’t be eleven.)

After finding the 7 vector as above, we can find quantities such as the long-run average number of
passengers on the bus,

20
> mi (6.27)
=0
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We can also compute the long-run average number of would-be passengers who fail to board the
bus. Denote by A; denote the number of passengers on the bus as it arrives at stop i. The key
point is that since A; = L;_1, then (6.4) and will give the same result, no matter whether we
look at the L; chain or the A; chain.

Now, armed with that knowledge, let D; denote the number of disappointed people at stop i. Then

ED;=1-P(D; =1)+2-P(D; = 2). (6.28)

That latter probability, for instance, is

P(D; =2) = P(A; = 20 and B; = 2) = P(A; = 20) P(B; = 2) (6.29)

while P(D; = 1) follows the same reasoning. Taking the limits as j — oo, we have

lim ED]‘ =1- [7‘(’19(0.1) + 7'('20(0.4)] +2- [71'2()(0.1)] (630)

Jj—0o0

Let’s find the long-run average number of customers who alight from the bus. This can be done by
considering all the various cases, but (4.63|) really shortens our work. Let U, be the number who
“unboard” at time n. Then

20
EU, =Y _ P(Ay =i)E(Uy|An = i) (6.31)
=0

Given A,, =i, U, has a binomial distribution with i trials and success probability 0.2, so
E(Uy|A, =i)=1i0.2 (6.32)
So, the right-hand side of [6.31] converges to

20
> i 0.2 (6.33)
=0

In other words, the long-run average number alighting is 0.2 times (6.27]).
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6.9 Example: an Inventory Model

Consider the following simple inventory model. A store has 1 or 2 customers for a certain item
each day, with probabilities v and w (v+w = 1). Each customer is allowed to buy only 1 item.

When the stock on hand reaches 0 on a day, it is replenished to r items immediately after the store
closes that day.

If at the start of a day the stock is only 1 item and 2 customers wish to buy the item, only one
customer will complete the purchase, and the other customer will leave emptyhanded.

Let X,, be the stock on hand at the end of day n (after replenishment, if any). Then X1, Xo, ...
form a Markov chain, with state space 1,2,...,r.

The transition probabilities are easy to find. Take pop, for instance. If there is a stock of 2 items
at the end of one day, what is the (conditional) probability that there is only 1 item at the end of
the next day? Well, for this to happen, there would have to be just 1 customer coming in, not 2,
and that has probability v. So, po; = v. The same reasoning shows that po, = w.

Let’s write a function inventory(v,w,r) that returns the 7 vector for this Markov chain. It will
call findpil(), similarly to the two code snippets on page For convenience, let’s assume r is
at least 3

inventory <— function(v,w,r) {
tm <— matrix(rep(0,r "2) ,nrow=r )
for (i in 3:1r) {
tm[i,i—1] <— v
tm[i,1-2] <—w

tm[2,1] <~ v
tm[2,r] <—w
tm[l,r] < 1

findpil (tm)

6.10 Expected Hitting Times

Consider an n-state Markov chain that is irreducible, meaning that it is possible to get from any
state ¢ to any other state j in some number of steps. Define the random variable T;; to be the time

SIf r is 2, then the expression 3:2 in the code evaluates to the vector (3,2), which would not be what we want in
this case.
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needed to go from state ¢ to state j. (Note that Tj; is NOT 0, though it can be 1 if p;; > 0.)

In many applications, we are interested in the mean time to reach a certain state, given that we
start at some specified state. In other words, we wish to calculate ET;;.

The material in Section is useful here. In (4.63), take V' = T}; and take U to be the first state
we visit after leaving state ¢ (which could be ¢ again). Then

E(Ty) =Y paB(Ty |U=k), 1<i,j<n (6.34)
k

Consider what happens if U = m # j. Then we will have already used up 1 time step, and still
will need an average of E7y; more steps to get to j. In other words,

E(T; |U=k#j)=1+ETy; (6.35)

Did you notice the Markov property being invoked?
On the other hand, the case U = j is simple:

B(T, | U =) =1 (6.36)
This then implies that
BE(Ty) =14 pxBE(Ty;), 1<i,j<n (6.37)
k#j

We'll focus on the case j = n, i.e. look at how long it takes to get to state n. (We could of
course do the same analysis for any other destination state.) Let 7; denote E(T},), and define
n=(n,n2, ., nn—1). (Note that n has only n — 1 components!) So,

mi=14Y pikmk, 1<i,j<n (6.38)
k<n

Equation (6.38) is a system of linear equations, which we can write in matrix form. Then the code
to solve the system is (remember, we have only an (n — 1) x (n — 1) system)

findeta <— function(p) {
n <— nrow(p)
q <— diag(n) — p
q<-q[l:(n—1),1:(n—1)]
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ones <— rep(1,n—1)
solve(q,ones)



Chapter 7

Continuous Probability Models

There are other types of random variables besides the discrete ones you studied in Chapter
This chapter will cover another major class, continuous random variables, which form the heart of
statistics and are used extensively in applied probability as well. It is for such random variables
that the calculus prerequisite for this book is needed.

7.1 Running Example: a Random Dart

Imagine that we throw a dart at random at the interval (0,1). Let D denote the spot we hit. By “at
random” we mean that all subintervals of equal length are equally likely to get hit. For instance,
the probability of the dart landing in (0.7,0.8) is the same as for (0.2,0.3), (0.537,0.637) and so on.

Because of that randomness,

for any case of 0 <u < v < 1.

We call D a continuous random variable, because its support is a continuum of points, in this
case, the entire interval (0,1).

125
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7.2 Individual Values Now Have Probability Zero

The first crucial point to note is that

P(D=¢)=0 (7.2)

for any individual point c. This may seem counterintuitive, but it can be seen in a couple of ways:

e Take for example the case ¢ = 0.3. Then

P(D =0.3) < P(0.29 < D < 0.31) = 0.02 (7.3)

the last equality coming from (7.1]).

So, P(D = 0.3) < 0.02. But we can replace 0.29 and 0.31 in (7.3) by 0.299 and 0.301, say,
and get P(D = 0.3) < 0.002. So, P(D = 0.3) must be smaller than any positive number, and
thus it’s actually 0.

e Reason that there are infinitely many points, and if they all had some nonzero probability
w, say, then the probabilities would sum to infinity instead of to 1; thus they must have
probability 0.

Similarly, one will see that (7.2) will hold for any continuous random variable.

Remember, we have been looking at probability as being the long-run fraction of the time an event
occurs, in infinitely many repetitions of our experiment—the “notebook” view. So doesn’t
say that D = ¢ can’t occur; it merely says that it happens so rarely that the long-run fraction of
occurrence is 0.

7.3 But Now We Have a Problem

But Equation presents a problem. In the case of discrete random variables M, we defined
their distribution via their probability mass function, pys. Recall that Section defined this as
a list of the values M takes on, together with their probabilities. But that would be impossible in
the continuous case—all the probabilities of individual values here are 0.

So our goal will be to develop another kind of function, which is similar to probability mass functions
in spirit, but circumvents the problem of individual values having probability 0. To do this, we
first must define another key function:
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7.3.1 Cumulative Distribution Functions

Definition 11 For any random variable W (including discrete ones), its camulative distribu-
tion function (cdf), Fyy, is defined by

Fy(t)=P(W <t),—o0 <t < o0 (7.4)

(Please keep in mind the notation. It is customary to use capital F to denote a cdf, with a subscript
consisting of the name of the random variable.)

What is t here? It’s simply an argument to a function. The function here has domain (—o0, ),
and we must thus define that function for every value of t. This is a simple point, but a crucial
one.

For an example of a cdf, consider our “random dart” example above. We know that, for example
for t = 0.23,

Fp(0.23) = P(D <0.23) = P(0< D <0.23) =0.23 (7.5)
Also,
Fp(—10.23) = P(D < —-10.23) =0 (7.6)
and
Fp(10.23) = P(D < 10.23) = 1 (7.7)

Note that the fact that D can never be equal to 10.23 or anywhere near it is irrelevant. Fp(t) is
defined for all t in (—o0, 00), including 10.23! The definition of Fp(10.23) is P(D < 10.23)), and
that probability is 1! Yes, D is always less than or equal to 10.23, right?

In general for our dart,

0, ift<0
Fp(t)=<t if0<t<l1 (7.8)
1, ift>1

Here is the graph of Fp:
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The cdf of a discrete random variable is defined as in Equation (7.4) too. For example, say Z is the
number of heads we get from two tosses of a coin. Then

0, ift<0
0.25, if0<t<1

Fy(t) = ’ - 7.9
20=Y 015 it1<t<2 (7.9)

1, ift>2

For instance,

Fz(1.2) = P(Z<1.2) (7.10)
= P(Z=0orZ=1) (7.11)
= 0.2540.50 (7.12)
= 0.75 (7.13)

Note that (7.11)) is simply a matter of asking our famous question, “How can it happen?” Here we
are asking how it can happen that Z < 1.2. The answer is simple: That can happen if Z is 0 or 1.
The fact that Z cannot equal 1.2 is irrelevant.

(7.12]) uses the fact that Z has a binomial distribution with n = 2 and p = 0.5.
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F is graphed below.
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The fact that one cannot get a noninteger number of heads is what makes the cdf of Z flat between
consecutive integers.

In the graphs you see that Fp in (7.8 is continuous while Fz in ((7.9) has jumps. This is another
reason we call random variables such as D continuous random variables.

At this level of study of probability, random variables are either discrete or continuous. But some
exist that are neither. We won’t see any random variables from the “neither” case here, and they
occur rather rarely in practice.

Armed with cdfs, let’s turn to the original goal, which was to find something for continuous random
variables that is similar in spirit to probability mass functions for discrete random variables.

7.3.2 Density Functions

Intuition is key here. Make SURE you develop a good intuitive understanding of density functions,
as it is vital in being able to apply probability well. We will use it a lot in our course.
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(The reader may wish to review pmfs in Section )

Think as follows. From we can see that for a discrete random variable, its cdf can be calculated
by summing it pmf. Recall that in the continuous world, we integrate instead of sum. So, our
continuous-case analog of the pmf should be something that integrates to the cdf. That of course
is the derivative of the cdf, which is called the density:

Definition 12 Consider a continuous random variable W. Define

fw(t) = %Fw(t), —00 <t < o0 (7.14)

wherever the derivative exists. The function fy is called the probability density function (pdf),
or just the density of W.

(Please keep in mind the notation. It is customary to use lower-case f to denote a density, with a
subscript consisting of the name of the random variable.)

But what is a density function? First and foremost, it is a tool for finding probabilities involving
continuous random variables:

7.3.3 Properties of Densities

Equation ([7.14)) implies

Property A:

P(a <W<L b) = Fw(b) — Fw(a) (715)
= /b fw(t) dt (7.16)

Where does ([7.15) come from? Well, Fyy(b) is all the probability accumulated from —oo to b, while
Fy (a) is all the probability accumulated from —oo to a. The difference is the probability that X
is between a and b.

(7.16) is just the Fundamental Theorem of Calculus: Integrate the derivative of a function, and
you get the original function back again.

Since P(W = ¢) = 0 for any single point ¢, Property A also means:
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Property B:

Pm<W§m=Pm§W§@:Pm§W<m=Pm<W<m=/Um@ﬁ (7.17)

This in turn implies:

Property C:

/mfwﬁwﬂzl (7.18)

Note that in the above integral, fy(t) will be 0 in various ranges of t corresponding to values W
cannot take on. For the dart example, for instance, this will be the case for t < 0 and ¢ > 1.

Any nonnegative function that integrates to 1 is a density. A density could be increasing, decreasing
or mixed. Note too that a density can have values larger than 1 at some points, even though it
must integrate to 1.

7.3.4 Intuitive Meaning of Densities

Suppose we have some continuous random variable X, with density fx, graphed in Figure [7.1]

Let’s think about probabilities of the form

P(s—01<X <s+0.1) (7.19)

Let’s first consider the case of s = 1.3.

The rectangular strip in the picture should remind you of your early days in calculus. What the
picture says is that the area under fx from 1.2 to 1.4 (i.e. 1.3+ 0.1) is approximately equal to the
area of the rectangle. In other words,

1.4
20)fx(13) = | fx(e) de (7.20)

But from our Properties above, we can write this as

P(12 < X < 1.4) ~2(0.1)fx(1.3) (7.21)
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Similarly, for s = 0.4,

P(0.3 < X < 0.5) ~ 2(0.1)fx (0.4) (7.22)

and in general

P(s—01< X <s+0.1) ~2(0.1) fx(s) (7.23)

This reasoning shows that:

Regions in the number line (X-axis in the picture) with low density have low probabilities
while regions with high density have high probabilities.

So, although densities themselves are not probabilities, they do tell us which regions will occur
often or rarely. For the random variable X in our picture, there will be many lines in the notebook
in which X is near 1.3, but many fewer in which X is near 0.4.

7.3.5 Expected Values

What about E(W)? Recall that if W were discrete, we’d have

E(W) =) _cowlc) (7.24)

C

where the sum ranges overall all values ¢ that W can take on. If for example W is the number of
dots we get in rolling two dice, ¢ will range over the values 2,3,...,12.

So, the analog for continuous W is:

Property D:

E(W) = /t L (2) dt (7.25)

where here t ranges over the values W can take on, such as the interval (0,1) in the dart case.
Again, we can also write this as

E(W) = / T e t) dt (7.26)

—0o0
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Figure 7.1: Approximation of Probability by a Rectangle
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in view of the previous comment that fyy(¢) might be 0 for various ranges of t.

And of course,

E(W?) = / 2 fur(t) dt (7.27)

and in general, similarly to (3.36)):

Property E:

Elg(W)] = / o(t) fur(2) dt (7.28)

Most of the properties of expected value and variance stated previously for discrete random variables
hold for continuous ones too:

Property F:

Equations (3.19)), (3.21)), (3.25)), (3.41)) and (3.49)) still hold in the continuous case.

7.4 A First Example

Consider the density function equal to 2t/15 on the interval (1,4), 0 elsewhere. Say X has this
density. Here are some computations we can do:

4
EX = / t-2t/15 dt = 2.8 (7.29)
1
4
P(X >25) = / 2t/15 dt = 0.65 (7.30)
2.5

Fx(s) = / 2t/15 dt = Sl for sin (1,4) (cdf is 0 for t < 1, and 1 for t > 4) (7.31)
1

Var(X) = EBE(X?) —(EX)* (from (3.41) (7.32)
= /4t22t/15 dt —2.8%  (from (7-29)) (7.33)
1

= 0.66 (7.34)
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Suppose L is the lifetime of a light bulb (say in years), with the density that X has above. Let’s
find some quantities in that context:

Proportion of bulbs with lifetime less than the mean lifetime:

2.8
P(L < 2.8) = / 2t/15 dt = (2.8% — 1)/15 (7.35)
1

Mean of 1/L:

B(1/L) = /141 L2t/15 dt — % (7.36)

In testing many bulbs, mean number of bulbs that it takes to find two that have
lifetimes longer than 2.5:

Use (4.37) with r = 2 and p = 0.65.

7.5 The Notion of Support in the Continuous Case

Recall from Section that the support of a discrete distribution is its “domain.” If for instance
X is the number of heads I get from 3 tosses of a coin, X can only take on the values 0, 1, 2 and 3.
We say that that set is the support of this distribution; 8, for example, is not in the support.

The notion extends to continuous random variables. In Section the support of the density
there is the interval (1,4).

7.6 Famous Parametric Families of Continuous Distributions

7.6.1 The Uniform Distributions
7.6.1.1 Density and Properties

In our dart example, we can imagine throwing the dart at the interval (q,r) (so this will be a
two-parameter family). Then to be a uniform distribution, i.e. with all the points being “equally
likely,” the density must be constant in that interval. But it also must integrate to 1 [see (7.18]).
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So, that constant must be 1 divided by the length of the interval:

fp(t) = (7.37)

for t in (q,r), O elsewhere.
It easily shown that E(D) = Z* and Var(D) = 5 (r — ¢)2.

The notation for this family is U(q,r).

7.6.1.2 R Functions

Relevant functions for a uniformly distributed random variable X on (r,s) are:

e dunif(x,r,s), to find fx(x)
e punif(q,r,s), to find P(X < q)
e qunif(q,r,s), to find ¢ such that P(X <¢) =g¢q

e runif(n,r,s), to generate n independent values of X

As with most such distribution-related functions in R, x and q can be vectors, so that punif() for
instance can be used to find the cdf values at multiple points.

7.6.1.3 Example: Modeling of Disk Performance

Uniform distributions are often used to model computer disk requests. Recall that a disk consists
of a large number of concentric rings, called tracks. When a program issues a request to read or
write a file, the read /write head must be positioned above the track of the first part of the file.
This move, which is called a seek, can be a significant factor in disk performance in large systems,
e.g. a database for a bank.

If the number of tracks is large, the position of the read/write head, which I'll denote as X, is like
a continuous random variable, and often this position is modeled by a uniform distribution. This
situation may hold just before a defragmentation operation. After that operation, the files tend
to be bunched together in the central tracks of the disk, so as to reduce seek time, and X will not
have a uniform distribution anymore.

Each track consists of a certain number of sectors of a given size, say 512 bytes each. Once the
read/write head reaches the proper track, we must wait for the desired sector to rotate around and
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pass under the read/write head. It should be clear that a uniform distribution is a good model for
this rotational delay.

For example, suppose in modeling disk performance, we describe the position X of the read/write
head as a number between 0 and 1, representing the innermost and outermost tracks, respectively.
Say we assume X has a uniform distribution on (0,1), as discussed above). Consider two consecutive
positions (i.e. due to two consecutive seeks), X and Xy, which we’ll assume are independent. Let’s
find Var(X; + X7).

We know from Section [7.6.1.1| that the variance of a U(0,1) distribution is 1/12. Then by indepen-
dence,

Var(X, + X5) =1/12+1/12 =1/6 (7.38)

7.6.1.4 Example: Modeling of Denial-of-Service Attack

In one facet of computer security, it has been found that a uniform distribution is actually a
warning of trouble, a possible indication of a denial-of-service attack. Here the attacker tries to
monopolize, say, a Web server, by inundating it with service requests. According to the research of

David Marchettef_-] attackers choose uniformly distributed false IP addresses, a pattern not normally
seen at servers.

7.6.2 The Normal (Gaussian) Family of Continuous Distributions

These are the famous “bell-shaped curves,” so called because their densities have that ShapeE]

7.6.2.1 Density and Properties

Density and Parameters:

The density for a normal distribution is

1 —un2
fr(t) = — e 05(%")" —oo < t < 00 (7.39)
yi¥ea

L Statistical Methods for Network and Computer Security, David J. Marchette, Naval Surface Warfare Center,
rion.math.iastate.edu/IA/2003/foils/marchette.pdf.

“All that glitters is not gold”—Shakespeare

Note that other parametric families, notably the Cauchy, also have bell shapes. The difference lies in the rate at
which the tails of the distribution go to 0. However, due to the Central Limit Theorem, to be presented below, the
normal family is of prime interest.


rion.math.iastate.edu/IA/2003/foils/marchette.pdf
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Again, this is a two-parameter family, indexed by the parameters y and o, which turn out to be
the meanE] and standard deviation y and o, The notation for it is N (u, 0?) (it is customary to state
the variance o2 rather than the standard deviation).

The normal family is so important that we have a special chapter on it, Chapter

7.6.3 The Exponential Family of Distributions

Please note: We have been talking here of parametric families of distributions, and in this section
will introduce one of the most famous, the family of exponential distributions. This should not be
confused, though, with the term exponential family that arises in mathematical statistics, which
includes exponential distributions but is much broader.

7.6.3.1 Density and Properties

The densities in this family have the form

fwr(t) =xe ™0 <t < o0 (7.40)

This is a one-parameter family of distributions.

After integration, one finds that E(W) = 1 and Var(W) = /\% You might wonder why it is
customary to index the family via A rather than 1/\ (see (7.40])), since the latter is the mean. But
this is actually quite natural, for the reason cited in the following subsection.

7.6.3.2 R Functions

Relevant functions for a uniformly distributed random variable X with parameter A are

dexp(x,lambda), to find fx(z)

pexp(g,lambda), to find P(X < q)

qexp(q,lambda), to find ¢ such that P(X <¢) =g¢q

rexp(n,lambda), to generate n independent values of X

3Remember, this is a synonym for expected value.
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7.6.3.3 Example: Refunds on Failed Components

Suppose a manufacturer of some electronic component finds that its lifetime L is exponentially
distributed with mean 10000 hours. They give a refund if the item fails before 500 hours. Let M
be the number of items they have sold, up to and including the one on which they make the first
refund. Let’s find EM and Var(M).

First, notice that M has a geometric distribution! It is the number of independent trials until the
first success, where a “trial” is one component, “success” (no value judgment, remember) is giving
a refund, and the success probability is

500
P(L < 500) = / 0.0001e%9001 g — 0.05 (7.41)
0
Then plug p = 0.05 into (4.11)) and (4.12]).

7.6.3.4 Example: Garage Parking Fees

A certain public parking garage charges parking fees of $1.50 for the first hour, and $1 per hour
after that. (It is assumed here for simplicity that the time after the first hour is prorated. The
reader should consider how the analysis would change if the garage “rounds up” each partial hour.)
Suppose parking times T are exponentially distributed with mean 1.5 hours. Let W denote the
total fee paid. Let’s find E(W) and Var(W).

The key point is that W is a function of T:

1.5T if 7 <1
_ { ) B (7.42)

1541-(T—1)=T+05, ifT>1

That’s good, because we know how to find the expected value of a function of a continuous random

variable, from (7.28)). Defining g() as in (7.42)) above, we have

EW /Oo (t) L o5t /11 5t — —ftdt+/oo(t+0 5) L o5ty (7.43)
= _— 1.5 = . _— .5 . _— 1.5 .

o TV 1se 0 1.5° . 1.5°
The integration is left to the reader.

Now, what about Var(W)? As is often the case, it’s easier to use (3.41)), so we need to find E(W?).
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The above integration becomes

2 < | ! 2, 1 1y > o 1 1y
EW=) = g°(t) ——e 15'dt = | 1.5°t —e 15'dt + (t+0.5)" —e 15'dt (7.44)
0 1.5 0 1.5 . 1.5
After evaluating this, we subtract (EW)?, giving us the variance of W.

7.6.3.5 Importance in Modeling

Many distributions in real life have been found to be approximately exponentially distributed.
A famous example is the lifetimes of air conditioners on airplanes. Another famous example is
interarrival times, such as customers coming into a bank or messages going out onto a computer
network. It is used in software reliability studies too.

One of the reasons why this family is used so widely in probabilistic modeling is that it has several
remarkable properties, so many that we have a special chapter for this family, Chapter [J]

7.6.4 The Gamma Family of Distributions
7.6.4.1 Density and Properties

Suppose at time 0 we install a light bulb in a lamp, which burns X7 amount of time. We immediately
install a new bulb then, which burns for time X5, and so on. Assume the X; are independent random
variables having an exponential distribution with parameter A.

Let

T,=X1+..+X,, r=1,2,3,... (7.45)

Note that the random variable T} is the time of the 7" light bulb replacement. T, is the sum of r
independent exponentially distributed random variables with parameter A\. The distribution of 7
is called an Erlang distribution. Its density can be shown to be

1
(r—1)!

fr.(t) = At lemM >0 (7.46)

This is a two-parameter family.

Again, it’s helpful to think in “notebook” terms. Say r = 8. Then we watch the lamp for the
durations of eight lightbulbs, recording Ty, the time at which the eighth burns out. We write that
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time in the first line of our notebook. Then we watch a new batch of eight bulbs, and write the
value of Ty for those bulbs in the second line of our notebook, and so on. Then after recording a
very large number of lines in our notebook, we plot a histogram of all the Tg values. The point is

then that that histogram will look like ([7.46]).
then

We can generalize this by allowing r to take noninteger values, by defining a generalization of the
factorial function:

I(r)= /000 2" e do (7.47)

This is called the gamma function, and it gives us the gamma family of distributions, more general
than the Erlang:

1
()

fw(t) = At lemA >0 (7.48)

(Note that I'(r) is merely serving as the constant that makes the density integrate to 1.0. It doesn’t
have meaning of its own.)

This is again a two-parameter family, with r and \ as parameters.

A gamma distribution has mean r/\ and variance r/A2. In the case of integer r, this follows from
and the fact that an exponentially distributed random variable has mean and variance 1/\
and variance 1/A\%, and it can be derived in general. Note again that the gamma reduces to the
exponential when r = 1.

7.6.4.2 Example: Network Buffer

Suppose in a network context (not our ALOHA example), a node does not transmit until it has
accumulated five messages in its buffer. Suppose the times between message arrivals are independent
and exponentially distributed with mean 100 milliseconds. Let’s find the probability that more than
552 ms will pass before a transmission is made, starting with an empty buffer.

Let X7 be the time until the first message arrives, Xy the time from then to the arrival of the
second message, and so on. Then the time until we accumulate five messages is Y = X1 + ... + Xs.
Then from the definition of the gamma family, we see that Y has a gamma distribution with r =



142 CHAPTER 7. CONTINUOUS PROBABILITY MODELS

5 and A = 0.01. Then

|
P(Y > 552) = / 70.015754@*00” dt (7.49)
552 4!

This integral could be evaluated via repeated integration by parts, but let’s use R instead:

> 1 - pgamma(552,5,0.01)
[1] 0.3544101

Note that our parameter r is called shape in R, and our A is rate.

Again, there are also dgamma(), ggamma() and rgammaly().

7.6.4.3 Importance in Modeling

As seen in ({9.1), sums of exponentially distributed random variables often arise in applications.
Such sums have gamma distributions.

You may ask what the meaning is of a gamma distribution in the case of noninteger r. There is
no particular meaning, but when we have a real data set, we often wish to summarize it by fitting
a parametric family to it, meaning that we try to find a member of the family that approximates
our data well.

In this regard, the gamma family provides us with densities which rise near t = 0, then gradually
decrease to 0 as t becomes large, so the family is useful if our data seem to look like this. Graphs
of some gamma densities are shown in Figure

As you might guess from the network performance analysis example in Section [7.6.4.2] the gamma
family does arise often in the network context, and in queuing analysis in general.

7.6.5 The Beta Family of Distributions

As seen in Figure the gamma family is a good choice to consider if our data are nonnegative,
with the density having a peak near 0 and then gradually tapering off to the right. What about
data in the range (0,1)?

For instance, say trucking company transports many things, including furniture. Let X be the
proportion of a truckload that consists of furniture. For instance, if 15% of given truckload is
furniture, then X = 0.15. So here we have a distribution with support in (0,1). The beta family
provides a very flexible model for this kind of setting, allowing us to model many different concave
up or concave down curves.
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Figure 7.3: Two Beta Densities

7.6.5.1 Density Etc.

The densities of the family have the following form:

T(a+3)

W(1 — )t (7.50)

There are two parameters, o and S. Figure [7.3] shows two possibilities.

The mean and variance are

(7.51)
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and

af
(a+B)2(a+B+1)

(7.52)

7.6.5.2 Importance in Modeling

As mentioned, the beta family is a natural candidate for modeling a variable having range the
interval (0,1).

This family is also popular among Bayesian statisticians (Section [18.4)).

7.7 Choosing a Model

The parametric families presented here are often used in the real world. As indicated previously,
this may be done on an empirical basis. We would collect data on a random variable X, and plot
the frequencies of its values in a histogram. If for example the plot looks roughly like the curves in
Figure we could choose this as the family for our model.

Or, our choice may arise from theory. If for instance our knowledge of the setting in which we
are working says that our distribution is memoryless, that forces us to use the exponential density
family.

In either case, the question as to which member of the family we choose will be settled by using
some kind of procedure which finds the member of the family which best fits our data. We will
discuss this in detail in our chapters on statistics, especially Chapter

Note that we may choose not to use a parametric family at all. We may simply find that our data
does not fit any of the common parametric families (there are many others than those presented
here) very well. Procedures that do not assume any parametric family are termed nonparametric.

7.8 Finding the Density of a Function of a Random Variable

Suppose X has, say, a uniform distribution on (1,4). Form a new random variable, Y = X2. How
can we find fy ()7 Reason as follows. For 1 < ¢t < 16,
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() = SRe() (def of density) (7.53)
- %P(Yﬁt) (def. of cdf) (7.54)
_ %P(Xg Vi) (def. of Y) (7.55)
_ %Fx(\/i) (def. of cdf) (7.56)
= fx(VD) g\/i (Chain Rule) (7.57)
= o0 (7.58)

Other such settings can be handeled similarly. Note, though, that the above derivation relied on
the fact that X > 0. Suppose X has a uniform distribution on (-1,1). Then the above derivation
would become, for 0 <t < 1,

fr(t) = %P(Y <t) (7.59)
= %P(—\ft <X <V (7.60)
d
= @2\/5 (7.61)
= 9 (7.62)

7.9 Quantile Functions

First, recall the definition of the inverse of a function, say h(). The inverse of h(), denoted h~1(),
“brings you back to where you started.” If I plug 3 into the squaring function, I get 9, and if I
then plug 9 into the square root function, I get back my original 3EI So we say that h(t) = t? and
k(s) = /s are inverses of each other. The same relation holds between exp() and In() and so on.

For a random variable X, its quantile function Qx(s) is defined by

Qx(s) = Fy'(s) (7.63)

4This assumes, of course, that the domain of my squaring function consists only of the nonnegative numbers.
We’ll put aside this and similar situations for the time being, but will return.
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This is called the s quantile of X.

A well-known example is the median of X, the point which half the probability is above and half
below. It’s the 0.5 quantile of X.

The cdf tells us that cumulative probability for a particular value of X, while the quantile function
does the opposite, “bringing us back.” Let’s make this concrete by considering the random variable

7 in Section [7.3.11

On the one hand, we can ask the question, “What is the probability that Z is at most 17", with
the answer being

Fz(1) =0.75 (7.64)

On the other hand, one can ask conversely, “At what value of X do we have cumulative probability
of 0.757” Here the answer is

Qz(0.75) = 1 (7.65)

It is no coincidence that the word quantile has that -ile suffix, given your familiarity with the word
percentile. They are really the same thing.

Suppose for example that 92% of all who take the SAT Math Test have scores of at most 725. In
other words, if you look at a randomly chosen test paper, and let X denote its score, then

Fx(725) = P(X < 725) = 0.92 (7.66)

On the other hand, if you are interested in the 92nd percentile score for the test, you are saying
“Find s such that P(X < s) = 0.92” you want

Qx(0.92) = 725 (7.67)

The reader should note that the R functions we’ve seen beginning with the letter ’q’, such as
qgeom() and qunif(), are quantile functions, hence the name.

However, a problem with discrete random variables is that the quantile values may not be unique.
The reader should verify, for instance, in the coin-toss example above, the 0.75 quantile for Z could
be not only 1, but also 1.1, 1.288 and so on. So, one should look carefully at the documentation of
quantile functions, to see what they do to impose uniqueness. But for continuous random variables
there is no such problem.
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7.10 Using cdf Functions to Find Probabilities

As we have seen, for many parametric families R has “d/p/q/r” functions, giving the density, cdf,
quantile function and random number generator for the given family. How can we use the cdf
functions to find probabilities of the form P(a < X < b)?

We see the answer in ((7.15)). We simply evaluate the cdf at b then a, and subtract.

For instance, consider the network buffer example, Section [7.6.4.2 Let’s find P(540 < Y < 562):
> pgamma (562 .,5,0.01) — pgamma(540,5,0.01)

[1] 0.03418264

Of course, we could also integrate the density,

> integrate (function(t) dgamma(t,5,0.01),540,562)

0.03418264 with absolute error < 3.8e—16

but R does that for us, there is probably little point in that second approach.

7.11 A General Method for Simulating a Random Variable

Suppose we wish to simulate a random variable X with density fx for which there is no R function.
This can be done via Fy'(U), where U has a U(0,1) distribution. In other words, we call runif()
and then plug the result into the inverse of the cdf of X.

For example, say X has the density 2t on (0,1). Then Fx(t) = t?, so F~!(s) = s". We can then
generate an X as sqrt(runif(1)). Here’s why:

For brevity, denote Fiy'! as G. Our generated random variable is then Y = G(U). Then

Fy(t) = P[GU) <] (7.68)
= PU<G 1) (7.69)
= P[U < Fx(t)] (7.70)
= Fx(t) (7.71)

(this last coming from the fact that U has a uniform distribution on (0,1)).

In other words, Y and X have the same cdf, i.e. the same distribution! This is exactly what we
want.
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Note that this method, though valid, is not necessarily practical, since computing F' )}1 may not be
easy.

7.12 Example: Writing a Set of R Functions for a Certain Power
Family

Consider the family of distributions indexed by positive values of ¢ with densities

cte! (7.72)

for t in (0,1) and 0 otherwise..
The cdf is t¢, so let’s call this the “tc¢” family.

Let’s find “d”, “p”, “q” and “r” functions for this family, just like R has for the normal family, the
gamma family and so on:

# density
dtc <— function(x,c) ¢ * x"(c—1)

# cdf

ptc <— function(x,c) x"c

# quantile function
qtc <— function(q,c) q°(1/c)

# random number generator, n values generated
rtc <— function(n,c) {

tmp <— runif(n)

qtc (tmp,c)

}

Note that to get rtc() we simply plug U(0,1) variates into qtc(), according to Section

Let’s check our work. The mean for the density having ¢ equal to 2 is 2/3 (reader should verify);
let’s see if a simulation will give us that:

> mean(rtc (10000,2))
(1] 0.6696941

Sure enough!
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7.13 Multivariate Densities

Section briefly introduced the notion of multivariate pmfs. Similarly, there are also multivariate
densities. Probabilities are then k-fold integrals, where k is the number of random variables.

For instance, a probability involving two variables means taking a double integral of a bivariate
density. Since that density can be viewed as a surface in three-dimensional space (just as a univariate
density is viewed as a curve in two-dimensional space), a probability is then a volume under that
surface (as opposed to area in the univariate case). Conversely, a bivariate density is the mixed
partial derivative of the cdf:

82
[xy(u,v) = mFX,Y(U,U) =P(X <u, Y <) (7.73)
In analogy to
_ P(B and A)
P(B|A)= w (7.74)

we can define the conditional density of Y given X:

fyix(u,v) = w (7.75)

The intuition behind this is that we are conditioning on X being near v. Actually,
fyix (u,v) = %in%) [density of Y | X € (v—h,v+ h)] (7.76)
ﬁ

A detailed treatment is presented in Chapter

7.14 Iterated Expectations

In analogy with (4.63), we have a very useful corresponding formula for the continuous case.
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7.14.1 The Theorem

For any random variable W and any continuous random variable VE]

E(W) = / T ) BOW |V = 1) dt (7.77)

Note that the event V' = t has probability 0 for coninuous V. The conditional expectation here is
defined in terms of the conditional distribution of W given V; see Section [7.13]

Note too that if we have some event A, we can set W above to the indicator random variable of A

(recall (3.9)), yielding

P(A) = / T PA |V =) dt (7.78)

7.14.2 Example: Another Coin Game

Suppose we have biased coins of various weightings, so that a randomly chosen coin’s probability
of heads H has density 2t on (0,1). The game has you choose a coin at random, toss it 5 times,
and pays you a prize if you get 5 heads. What is your probability of winning?

First, note that the probability of winning, given H = t, is 5. then (7.78) tells us that

1

2

P(win) = / 2t 10 dt = - (7.79)
0

7.15 Continuous Random Variables Are “Useful Unicorns”

Recall our random dart example at the outset of this chapter. It must be kept in mind that this is
only an idealization. D actually cannot be just any old point in (0,1). To begin with, our measuring
instrument has only finite precision. Actually, then, D can only take on a finite number of values.
If, say, our precision is four decimal digits, then D can only be 0.0001, 0.0002, ..., 0.9999, making
it a discrete random variable after alllf]

So this modeling of the position of the dart as continuously distributed really is just an idealization.
Indeed, in practice there are NO continuous random variables. But the coninuous model can be an

5The treatment here will be intuitive, rather than being a mathematical definition and proof.
SThere are also issues such as the nonzero thickness of the dart, and so on, further restricting our measurement.
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excellent approximation, and the concept is extremely useful. It’s like the assumption of “massless
string” in physics analyses; there is no such thing, but it’s a good approximation to reality.

As noted, most applications of statistics, and many of probability, are based on continuous distri-
butions. We’ll be using them heavily for the remainder of this book.

Exercises

1. Fill in the blanks, in the following statements about continuous random variables. Make sure
to use our book’s notation.

(a) IP(X<t)=

(b) Pla< X <b) = =

2. Suppose X has a uniform distribution on (-1,1), and let Y = X?. Find fy.

3. Suppose X has an exponential distribution with parameter A\. Show that FX = 1/A and
Var(X) =1/)%

4. Suppose fx(t) = 3t for t in (0,1) and is zero elsewhere. Find Fx (0.5) and E(X).

5. Suppose light bulb lifetimes X are exponentially distributed with mean 100 hours.
(a) Find the probability that a light bulb burns out before 25.8 hours.

In the remaining parts, suppose we have two light bulbs. We install the first at time 0, and then
when it burns out, immediately replace it with the second.

(b) Find the probability that the first light bulb lasts less than 25.8 hours and the lifetime of the
second is more than 120 hours.
(c) Find the probability that the second burnout occurs after time 192.5.
6. Suppose for some continuous random variable X, fx(t) is equal to 2(1-t) for t in (0,1) and is 0
elsewhere.
(a) Why is the constant here 27 Why not, say, 1687

(b) Find Fx(0.2) and Var(X).
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(c¢) Using the method in Section write an R function, named oneminust(), that generates a
random variate sampled from this distribution. Then use this function to verify your answers
in (b) above.

7. The company Wrong Turn Criminal Mismanagement makes predictions every day. They tend
to err on the side of overpredicting, with the error having a uniform distribution on the interval
(-0.5,1.5). Find the following:

(a) The mean and variance of the error.
(b) The mean of the absolute error.
(c) The probability that exactly two errors are greater than 0.25 in absolute value, out of 10

predictions. Assume predictions are independent.

8. Consider the following game. A dart will hit the random point ¥ in (0,1) according to the
density fy(t) = 2t. You must guess the value of Y. (Your guess is a constant, not random.) You
will lose $2 per unit error if Y is to the left of your guess, and will lose $1 per unit error on the
right. Find best guess in terms of expected loss.

9. Fill in the blank: Density functions for continuous random variables are analogs of the
functions that are used for discrete random variables.

10. Suppose for some random variable W, Fyy () = 3 for 0 < t < 1, with Fyy (t) being 0 and 1 for
t <0 and t > 1, respectively. Find fy (t) for 0 <t < 1.

11. Consider the density fz(t) = 2t/15 for 1 < t < 4 and 0 elsewhere. Find the median of Z, as
well as Z’s third moment, E(Z3), and its third central moment, E[(Z — EZ)3].

12. Suppose X has a uniform distribution on the interval (20,40), and we know that X is greater
than 25. What is the probability that X is greater than 327

13. Suppose U and V have the 2t/15 density on (1,4). Let N denote the number of values among
U and V that are greater than 1.5, so N is either 0, 1 or 2. Find Var(N).
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Chapter 8

The Normal Family of Distributions

)

Again, these are the famous “bell-shaped curves,” so called because their densities have that shape.

8.1 Density and Properties

The density for a normal distribution is

fr(t) = —— 035 oo <t < oo (8.1)

= e
V2o

Again, this is a two-parameter family, indexed by the parameters p and o, which turn out to be
the meanE] and standard deviation y and o, The notation for it is N (u, 0?) (it is customary to state
the variance o2 rather than the standard deviation).

And we write

X" N(u,0?) (8.2)

to mean that the random variable X has the distribution N(u,0?). (The tilde is read “is distributed
as.”)

Note: Saying “X has a N(u,o?) distribution” is more than simply saying “X has mean u and
variance o©.” The former statement tells us not only the mean and variance of X, but also the fact
that X has a “bell-shaped” density in the (8.1]) family.

7

'Remember, this is a synonym for expected value.
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8.1.1 Closure Under Affine Transformation

The family is closed under affine transformations:

If

and we set

then

X" N(u, 0% (8.3)
Y =cX +d (8.4)
Y N(cp+d, c*o?) (8.5)

For instance, suppose X is the height of a randomly selection UC Davis student, measured in
inches. Human heights do have approximate normal distributions; a histogram plot of the student
heights would look bell-shaped. Now let Y be the student’s height in centimeters. Then we have
the situation above, with ¢ = 2.54 and d = 0. The claim about affine transformations of normally
distributed random variables would imply that a histogram of Y would again be bell-shaped.

Consider the above statement carefully.

It is saying much more than simply that Y has mean cu + d and variance c??, which
would follow from our our “mailing tubes” such as even if X did not have a
normal distribution. The key point is that this new variable Y is also a member of
the normal family, i.e. its density is still given by , now with the new mean and

variance.

Let’s derive this, using the reasoning of Section [7.8

For convenience, suppose ¢ > 0. Then

Fy(t)

P(Y <t) (definition of Fy) (8.6)

P(cX +d<t) (definition of Y) (8.7)

P (X < L= d> (algebra) (8.8)
c

C

t—d
Fx < ) (definition of Fx) (8.9)
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Therefore

d

fyr(t) = —Fy(t) (definition of fy)

dt

d t—d
— %FX <c> (from )

V2 (co)

That last expression is the N(cu + d, c20?) density, so we are done!

dt—d

t—d
B fX< c >'dt
t—d 2
1 1 —0.5( <=+~
-, e < ’ ) (from |D
c \2mo

1 _ t—(cptd) \2
— e 0'5< oo ) (algebra)

8.1.2 Closure Under Independent Summation

(definition of fx and the Chain Rule)
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(8.10)

(8.11)

(8.12)

(8.13)

(8.14)

If X and Y are independent random variables, each having a normal distribution, then their sum S

= X 4+ Y also is normally distributed.

This is a pretty remarkable phenomenon, not true for most other parametric families. If for instance
X and Y each with, say, a U(0,1) distribution, then the density of S turns out to be triangle-shaped,
NOT another uniform distribution. (This can be derived using the methods of Section [13.3.2})

Note that if X and Y are independent and normally distributed, then the two properties above

imply that ¢cX + dY will also have a normal distribution, for any constants ¢ and d.

More generally:

For constants ay, ..., a; and random variables X1, ..., X}, with

Xi "N (i, 07
form the new random variable Y = a1 X7 + ... + apX}. Then
k k

YN pi Y o)

=1 =1

(8.15)

(8.16)
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8.2 The Standard Normal Distribution

Definition 13 If Z7 N(0,1) we say the random variable Z has a standard normal distribution.
Note that if XN (u,0?), and fi we set

(8.17)

then

Z7N(0,1) (8.18)

The above statements follow from the earlier material:

Define 7 = %

. . _ 1 —
Rewrite it as Z = = - X + (=£).

Since E(cU 4 d) = ¢ EU + d for any random variable U and constants ¢ and d, we have

1
Ez=-Ex-"=0 (8.19)

g (o

and (3.56) and (3.49) imply that Var(X) = 1.

e OK, so we know that Z has mean 0 and variance 1. But does it have a normal distribution?
Yes, due to our discussion above titled “Closure Under Affine Transformations.”

By the way, the N(0,1) cdf is traditionally denoted by ®.

8.3 Evaluating Normal cdfs

The function in does not have a closed-form indefinite integral. Thus probabilities involving
normal random variables must be approximated. Traditionally, this is done with a table for the cdf
of N(0,1), which is included as an appendix to almost any statistics textbook; the table gives the
cdf values for that distribution.

But this raises a question: There are infinitely many distributions in the normal family. Don’t
we need a separate table for each? That of course would not be possible, and in fact it turns out
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that this one table—the one for the N(0,1) distribution— is sufficient for the entire normal family.
Though we of course will use R to gt such probabilities, it will be quite instructive to see how these
table operations work.

Here’s why one table is enough: Say X has an N(10,2.52) distribution. How can we get a probability
like, say, P(X < 12) using the N(0,1) table? Write

12 -10
2.5

P(X<12)=P (Z < > — P(Z < 0.8) (8.20)

Since on the right-hand side Z has a standard normal distribution, we can find that latter probably
from the N(0,1) table!

As noted, traditionally it has played a central role, as one could transform any probability involving
some normal distribution to an equivalent probability involving N(0,1). One would then use a table
of N(0,1) to find the desired probability.

The transformation Z = (X — p)/o will play a big role in other contexts in future chapters, but for
the sole purpose of simply evaluating normal probabilities, we can be much more direct. Nowadays,
probabilities for any normal distribution, not just N(0,1), are easily available by computer. In the R
statistical package, the normal cdf for any mean and variance is available via the function pnorm().
The call form is

pnorm(q,mean=0,sd=1)

This returns the value of the cdf evaluated at q, for a normal distribution having the specified mean
and standard deviation (default values of 0 and 1).

We can use rnorm() to simulate normally distributed random variables. The call is

rnorm(n,mean=0,sd=1)

which returns a vector of n random variates from the specified normal distribution.

There are also of course the corresponding density and quantile functions, dnorm() and gnormy().
8.4 Example: Network Intrusion

As an example, let’s look at a simple version of the network intrusion problem. Suppose we have
found that in Jill’s remote logins to a certain computer, the number X of disk sectors she reads or
writes has an approximate normal distribution with a mean of 500 and a standard deviation of 15.



160 CHAPTER 8. THE NORMAL FAMILY OF DISTRIBUTIONS

Before we continue, a comment on modeling: Since the number of sectors is discrete, it could not
have an exact normal distribution. But then, no random variable in practice has an exact normal
or other continuous distribution, as discussed in Section and the distribution can indeed by
approximately normal.

Now, say our network intrusion monitor finds that Jill—or someone posing as her—has logged in
and has read or written 535 sectors. Should we be suspicious?

To answer this question, let’s find P(X > 535): Let Z = (X —500)/15. From our discussion above,
we know that Z has a N(0,1) distribution, so

535 — 500

P(X >535)=P <Z >

) =1 - ®(35/15) = 0.01 (8.21)

Again, traditionally we would obtain that 0.01 value from a N(0,1) cdf table in a book. With R,
we would just use the function pnorm():

> 1 - pnorm(535,500,15)
[1] 0.009815329

Anyway, that 0.01 probability makes us suspicious. While it could really be Jill, this would be
unusual behavior for Jill, so we start to suspect that it isn’t her. It’s suspicious enough for us to
probe more deeply, e.g. by looking at which files she (or the impostor) accessed—were they rare
for Jill too?

Now suppose there are two logins to Jill’s account, accessing X and Y sectors, with X+Y = 1088.
Is this rare for her, i.e. is P(X +Y > 1088)7 small?

We’'ll assume X and Y are independent. We’d have to give some thought as to whether this
assumption is reasonable, depending on the details of how we observed the logins, etc., but let’s
move ahead on this basis.

From page[I57], we know that the sum S = X+47Y is again normally distributed. Due to the properties
in Chapter [3| we know S has mean 2 - 500 and variance 2 - 152. The desired probability is then
found via

1 — pnorm(1088,1000,sqrt (450))

which is about 0.00002. That is indeed a small number, and we should be highly suspicious.

Note again that the normal model (or any other continuous model) can only be approximate,
especially in the tails of the distribution, in this case the right-hand tail. But it is clear that S is
only rarely larger than 1088, and the matter mandates further investigation.
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Of course, this is very crude analysis, and real intrusion detection systems are much more complex,
but you can see the main ideas here.

8.5 Example: Class Enrollment Size

After years of experience with a certain course, a university has found that online pre-enrollment
in the course is approximately normally distributed, with mean 28.8 and standard deviation 3.1.
Suppose that in some particular offering, pre-enrollment was capped at 25, and it hit the cap. Find
the probability that the actual demand for the course was at least 30.

Note that this is a conditional probability! FEvaulate it as follows. Let N be the actual demand.
Then the key point is that we are given that N > 25, so

PN > 30N >25) = LW ZP??Vaing = 25) () (8.22)
_ P(N >30)
 1—®[(30 —28.8)/3.1]
- 1-®[(25—28.8)/3.1] (8:24)
= 0.39 (8.25)

Sounds like it may be worth moving the class to a larger room before school starts.

Since we are approximating a discrete random variable by a continuous one, it might be more
accurate here to use a correction for continuity, described in Section

8.6 More on the Jill Example

Continuing the Jill example, suppose there is never an intrusion, i.e. all logins are from Jill herself.
Say we’ve set our network intrusion monitor to notify us every time Jill logs in and accesses 535 or
more disk sectors. In what proportion of all such notifications will Jill have accessed at least 545
sectors?

This is P(X > 545—X > 535). By an analysis similar to that in Section this probability is
(1 — pnorm(545,500,15)) / (1 — pnorm(535,500,15))



162 CHAPTER 8. THE NORMAL FAMILY OF DISTRIBUTIONS

8.7 Example: River Levels

Consider a certain river, and L, its level (in feet) relative to its average. There is a flood whenever
L > 8, and it is reported that 2.5% of days have flooding. Let’s assume that the level L is normally
distributed; the above information implies that the mean is 0.

Suppose the standard deviation of L, o, goes up by 10%. How much will the percentage of flooding
days increase?

To solve this, let’s first find 0. We have that

I — _
0.025 = P(L>8) = P < 0.8 0) (8.26)
o o
Since (L — 0)/o has a N(0,1) distribution, we can find the 0.975 point in its cdf:
> gqnorm(0.975,0,1)
[1] 1.959964
So,
8—-0
1.96 = (8.27)
o

so o is about 4.

If it increases to 4.4, then we can evaluate P(L > 8) by
> 1 — pnorm(8,0,4.4)
(1] 0.03451817

So, a 10% increase in o would lead in this case to about a 40% increase in flood days.

8.8 Example: Upper Tail of a Light Bulb Distribution

Suppose we model light bulb lifetimes as having a normal distribution with mean and standard
deviation 500 and 50 hours, respectively. Give a loop-free R expression for finding the value of d
such that 30% of all bulbs have lifetime more than d.

You should develop the ability to recognize when we need p-series and g-series functions. Here we
need

gnorm(1—0.30,500,50)
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8.9 The Central Limit Theorem

The Central Limit Theorem (CLT) says, roughly speaking, that a random variable which is a sum
of many components will have an approximate normal distribution. So, for instance, human weights
are approximately normally distributed, since a person is made of many components. The same is
true for SAT test scoresE] as the total score is the sum of scores on the individual problems.

There are many versions of the CLT. The basic one requires that the summands be independent
and identically distributed ]

Theorem 14 Suppose X1, Xo, ... are independent random variables, all having the same distribu-
tion which has mean m and variance v2. Form the new random variable T = X1 + ... + X,,. Then

for large n, the distribution of T is approzimately normal with mean nm and variance nv?.

The larger n is, the better the approximation, but typically n = 20 or even n = 10 is enough.

8.10 Example: Cumulative Roundoff Error

Suppose that computer roundoff error in computing the square roots of numbers in a certain range
is distributed uniformly on (-0.5,0.5), and that we will be computing the sum of n such square roots.
Suppose we compute a sum of 50 square roots. Let’s find the approximate probability that the
sum is more than 2.0 higher than it should be. (Assume that the error in the summing operation
is negligible compared to that of the square root operation.)

Let Uy, ...,Usp denote the errors on the individual terms in the sum. Since we are computing a
sum, the errors are added too, so our total error is

By the Central Limit Theorem, since T is a sum, it has an approximately normal distribution, with
mean 50 EU and variance 50 Var(U), where U is a random variable having the distribution of the
U;. From Section [7.6.1.1, we know that

EU = (=054 05)/2=0, Var(U) = %[0.5 C(—05)? = % (8.29)

2This refers to the raw scores, before scaling by the testing company.
3 A more mathematically precise statement of the theorem is given in Section
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So, the approximate distribution of T is N(0,50/12). We can then use R to find our desired
probability:

> 1 — pnorm (2 ,mean=0,sd=sqrt (50/12))
(1] 0.1635934

8.11 Example: R Evaluation of a Central Limit Theorem Approx-
imation
Say W = Uj + ... + Usp, with the U; being independent and identically distributed (i.i.d.) with

uniform distributions on (0,1). Give an R expression for the approximate value of P(W < 23.4).

W has an approximate normal distribution, with mean 50 x 0.5 and variance 50 x (1/12). So we
need

pnorm(23.4,25 sqrt(50/12))

8.12 Example: Bug Counts

As an example, suppose the number of bugs per 1,000 lines of code has a Poisson distribution with
mean 5.2. Let’s find the probability of having more than 106 bugs in 20 sections of code, each 1,000
lines long. We’ll assume the different sections act independently in terms of bugs.

Here X; is the number of bugs in the i'” section of code, and T is the total number of bugs. This
is another clear candidate for using the CLT.

Since each X; has a Poisson distribution, m = v? = 5.2. So, T, being a sum, is approximately
distributed normally with mean and variance 20 x 5.2. So, we can find the approximate probability
of having more than 106 bugs:

> 1 - pnorm(106,20%5.2,sqrt (20%5.2))
[1] 0.4222596

8.13 Example: Coin Tosses

Binomially distributed random variables, though discrete, also are approximately normally dis-
tributed. Here’s why:
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Say T has a binomial distribution with n trials. Then we can write T as a sum of indicator random

variables (Section [3.9):

T=T+..+T, (8.30)

where T; is 1 for a success and 0 for a failure on the it" trial. Since we have a sum of indepen-
dent, identically distributed terms, the CLT applies. Thus we use the CLT if we have binomial
distributions with large n.

For example, let’s find the approximate probability of getting more than 12 heads in 20 tosses of a
coin. X, the number of heads, has a binomial distribution with n = 20 and p = 0.5 Its mean and
variance are then np = 10 and np(1-p) = 5. So, let Z = (X — 10)/+/5, and write

12 — 10
V5

P(X >12)=P(Z > )~ 1— ®(0.894) = 0.186 (8.31)

Or:

> 1 - pnorm(12,10,sqrt(5))
[1] 0.1855467

The exact answer is 0.132, not too close. Why such a big error? The main reason is n here is rather
small. But actually, we can still improve the approximation quite a bit, as follows.

Remember, the reason we did the above normal calculation was that X is approximately normal,
from the CLT. This is an approximation of the distribution of a discrete random variable by a
continuous one, which introduces additional error.

We can get better accuracy by using the correction of continuity, which can be motivated as
follows. As an alternative to (8.31]), we might write

13 -10

V5

That value of 0.090 is considerably smaller than the 0.186 we got from (8.31)). We could “split the
difference” this way:

P(X >12)=P(X >13)=P(Z > )~ 1 — ®(1.342) = 0.090 (8.32)

12.5 - 10
V5
(Think of the number 13 “owning” the region between 12.5 and 13.5, 14 owning the part between

13.5 and 14.5 and so on.) Since the exact answer to seven decimal places is 0.131588, the strategy
has improved accuracy substantially.

P(X >12) = P(X >125) = P(Z > )~ 1— ®(1.118) = 0.132 (8.33)
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The term correction for continuity alludes to the fact that we are approximately a discrete distri-
bution by a continuous one.

8.14 Example: Normal Approximation to Gamma Family

Recall from above that the gamma distribution, or at least the Erlang, arises as a sum of independent
random variables. Thus the Central Limit Theorem implies that the gamma distribution should
be approximately normal for large (integer) values of r. We see in Figure that even with r =
10 it is rather close to normal [l

8.15 Example: Museum Demonstration

Many science museums have the following visual demonstration of the CLT.

There are many balls in a chute, with a triangular array of r rows of pins beneath the chute. Each
ball falls through the rows of pins, bouncing left and right with probability 0.5 each, eventually
being collected into one of r bins, numbered 0 to r. A ball will end up in bin i if it bounces rightward
in i of the r rows of pins, i = 0,1,...,r. Key point:

Let X denote the bin number at which a ball ends up. X is the number of rightward
bounces (“successes”) in r rows (“trials”). Therefore X has a binomial distribution with
n=randp=0.5

Each bin is wide enough for only one ball, so the balls in a bin will stack up. And since there are
many balls, the height of the stack in bin i will be approximately proportional to P(X = i). And
since the latter will be approximately given by the CLT, the stacks of balls will roughly look like
the famous bell-shaped curve!

There are many online simulations of this museum demonstration, such ashttp://www.mathsisfun,
com/data/quincunx.html. By collecting the balls in bins, the apparatus basically simulates a his-
togram for X, which will then be approximately bell-shaped.

Tt should be mentioned that technically, the CLT, which concerns convergence of cdfs, does not imply convergence
of densities. However, under mild mathematical conditions, convergence of densities occurs too.


http://www.mathsisfun.com/data/quincunx.html
http://www.mathsisfun.com/data/quincunx.html
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8.16 Importance in Modeling

Needless to say, there are no random variables in the real world that are exactly normally dis-
tributed. In addition to our comments at the beginning of this chapter that no real-world random
variable has a continuous distribution, there are no practical applications in which a random vari-
able is not bounded on both ends. This contrasts with normal distributions, which extend from
—0o0 to oo.

Yet, many things in nature do have approximate normal distributions, so normal distributions play
a key role in statistics. Most of the classical statistical procedures assume that one has sampled from
a population having an approximate distribution. In addition, it will be seen later than the CLT
tells us in many of these cases that the quantities used for statistical estimation are approximately
normal, even if the data they are calculated from are not.

Recall from above that the gamma distribution, or at least the Erlang, arises as a sum of independent
random variables. Thus the Central Limit Theorem implies that the gamma distribution should
be approximately normal for large (integer) values of r. We see in Figure that even with r =
10 it is rather close to normal.

8.17 The Chi-Squared Family of Distributions

8.17.1 Density and Properties

Let Zy, Zs, ..., Z), be independent N(0,1) random variables. Then the distribution of

V=2 +..+ 2} (8.34)
is called chi-squared with k degrees of freedom. We write such a distribution as xz. Chi-

squared is a one-parameter family of distributions, and arises quite frequently in statistical appli-
cations, as will be seen in future chapters.

We can derive the mean of a chi-squared distribution as follows. First,

EY = E(Z? + ...+ Z}) = kE(Z}) (8.35)

Well, E(Z?) sounds somewhat like variance, and we do know that Var(Z;) = 1. Let’s use that
fact:

E(Z}) = Var(Z)) + [E(Z)])? = Var(Z,) =1 (8.36)
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Then EY in (8.34) is k. One can also show that Var(Y) = 2k.

It turns out that chi-squared is a special case of the gamma family in Section below, with r
=k/2 and A = 0.5.

The R functions dchisq(), pchisq(), qchisq() and rchisq() give us the density, cdf, quantile
function and random number generator for the chi-squared family. The second argument in each
case is the number of degrees of freedom. The first argument is the argument to the corresponding
math function in all cases but rchisq(), in which it is the number of random variates to be
generated.

For instance, to get the value of fx(5.2) for a chi-squared random variable having 3 degrees of
freedom, we make the following call:

> dchisq (5.2,3)
(1] 0.06756878

8.17.2 Example: Error in Pin Placement

Consider a machine that places a pin in the middle of a flat, disk-shaped object. The placement
is subject to error. Let X and Y be the placement errors in the horizontal and vertical directions,
respectively, and let W denote the distance from the true center to the pin placement. Suppose X
and Y are independent and have normal distributions with mean 0 and variance 0.04. Let’s find
P(W > 0.6).

Since a distance is the square root of a sum of squares, this sounds like the chi-squared distribution
might be relevant. So, let’s first convert the problem to one involving squared distance:

P(W > 0.6) = P(W? > 0.36) (8.37)

But W2 = X2 +Y?2 so

P(W >0.6) = P(X*+Y? > 0.36) (8.38)

This is not quite chi-squared, as that distribution involves the sum of squares of independent N(0,1)
random variables. But due to the normal family’s closure under affine transformations (page [156)),
we know that X/0.2 and Y /0.2 do have N(0,1) distributions. So write

P(W > 0.6) = P[(X/0.2)* + (Y/0.2)* > 0.36/0.22] (8.39)

Now evaluate the right-hand side:
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> 1 — pchisq(0.36/0.04,2)
[1]

1] 0.01110900

8.17.3 Example: Generating Normal Random Numbers

How do normal random number generators such as rnorm() work? While in principle Section
m could be used, the lack of a closed-form expression for ®~'0 makes that approach infeasible.
Instead, we can exploit the relation between the normal family and exponential distribution, as
follows.

Let Z; and Z3 be two independent N(0,1) random variables, and define W = ZZ+ Z2. By definition,
W has a chi-squared distribution with 2 degrees of freedom, and from Section we know that
W has a gamma distribution with £ =1 and A = 0.5.

In turn, we know from Section that that distribution is actually just an exponential distribution
with the same value of A\. This is quite fortuitous, since Section [7.11] can be used in this case.

Specifically, fiy(t) = 0.5¢79%, so Fyy(t) =1 — e %5 Thus

Fyt(s) = —2In(1 — s) (8.40)

And there’s more. Think of plotting the pair (77, Z2) in the X-Y plane, and define

0 = tan_1(§) (8.41)

One can show that 6 has a uniform distribution on (0, 27). Also,

X =Wecos(f), Y = Wsin(6) (8.42)

Putting all this together, we can generate a pair of independent N(0,1) random variates via the
code

function genn01() {
theta <— runif(1,0,pi)
w <— —log (1l — runif(1))
c(wkcos(theta) ,wksin (theta))
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Note by the way that we “get two for the price of one.” If we need, say, 1000 random normal
variates, we call the above function 500 times. If we need just variate, we use the first in the
returned pair, and save the second in case we need it later in another call.

8.17.4 Importance in Modeling
This distribution family does not come up directly in application nearly so often as, say, the binomial
or normal distribution family.

But the chi-squared family is used quite widely in statistical applications. As will be seen in our
chapters on statistics, many statistical methods involve a sum of squared normal random VariableSE]

8.17.5 Relation to Gamma Family

One can show that the chi-square distribution with d degrees of freedom is a gamma distribution,
with r = d/2 and A = 0.5.

8.18 The Multivariate Normal Family

(Here we borrow some material from Chapter [13])

The generalization of the normal family is the multivariate normal. Instead of being parameterized
by a scalar mean and a scalar variance, the multivariate normal family has as its parameters a
vector mean and a covariance matrix.

Let’s look at the bivariate case first. The joint distribution of X; and X5 is said to be bivariate
normal if their density is

1 ! (s—u1)2+(t—u2)2_Qp(s—m)(t—u?)
2(1—p2) o'% ag 0109

2wo1094/ 1 — p? ’

This looks horrible, and it is. But don’t worry, as we won’t work with this directly.
It’s important for conceptual reasons, as follows.

fxy(s,t) = —oo<s,t<oo  (8.43)

First, note the parameters here: p1, ps, 01 and oo are the means and standard deviations of X and
Y, while p is the correlation between X and Y. So, we have a five-parameter family of distributions.

5The motivation for the term degrees of freedom will be explained in those chapters too.
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The graph of the bivariate normal density looks like a 3-dimensional bell, as seen on the cover of
this book.

The multivariate normal family of distributions is parameterized by one vector-valued quantity,
the mean p, and one matrix-valued quantity, the covariance matrix . Specifically, suppose the
random vector X = (X7, ..., X;)" has a k-variate normal distribution.

The density has this form:

Fx(t) = ce” 08—m=" t—m) (8.44)

Here c is a constant, needed to make the density integrate to 1.0.

There is a Multivariate Central Limit Theorem, that says that sums of random vectors have ap-
proximately multivariate normal distributions.

In R the density, cdf and quantiles of the multivariate normal distribution are given by the func-
tions dmvnorm(), pmvnorm() and gmvnorm() in the library mvtnorm. You can simulate a
multivariate normal distribution by using mvrnorm() in the library MASS.

8.19 Optional Topic: Precise Statement of the CLT

The statement of Theorem is not mathematically precise. We will fix it here, not just for
mathematical niceness, but also because it leads to something called the delta method, a very
practical tool in statistics.

8.19.1 Convergence in Distribution, and the Precisely-Stated CLT

Definition 15 A sequence of random wvariables Ly, Lo, L3, ... converges in distribution to a
random variable M if

lim P(L, <t)=P(M <t), forallt (8.45)

n—o0

Note by the way, that these random variables need not be defined on the same probability space.

The formal statement of the CLT is:

Theorem 16 Suppose X1, Xo, ... are independent random variables, all having the same distribu-
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tion which has mean m and variance v. Then

X1t Xy —nm
B vy/n

converges in distribution to a N(0,1) random variable.

Z (8.46)

Exercises

1. In the network intrusion example in Section [8.4] suppose X is not normally distributed, but
instead has a uniform distribution on (450,550). Find P(X > 535) in this case.

2. “All that glitters is not gold,” and not every bell-shaped density is normal. The family of
Cauchy distributions, having density

fX(t)zT:cH(lt—)Z’ 00 <t <00 (8.47)

is bell-shaped but definitely not normal.

Here the parameters b and ¢ correspond to mean and standard deviation in the normal case, but
actually neither the mean nor standard deviation exist for Cauchy distributions. The mean’s failure
to exist is due to technical problems involving the theoretical definition of integration. In the case of
variance, it does not exist because there is no mean, but even more significantly, E[(X — b)?] = cc.

However, a Cauchy distribution does have a median, b, so we’ll use that instead of a mean. Also,
instead of a standard deviation, we’ll use as our measure of dispersion the interquartile range,
defined (for any distribution) to be the difference between the 75th and 25th percentiles.

We will be investigating the Cauchy distribution that has b = 0 and ¢ = 1.

(a) Find the interquartile range of this Cauchy distribution.

(b) Find the normal distribution that has the same median and interquartile range as this Cauchy
distribution.

(c) Use R to plot the densities of the two distributions on the same graph, so that we can see
that they are both bell-shaped, but different.

3. Suppose X has a binomial distribution with parameters n and p. Then X is approximately
normally distributed with mean np and variance np(1-p). For each of the following, answer either
A or E, for “approximately” or “exact,” respectively:
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(a) the distribution of X is normal
(b) E(X) is np
(¢) Var(X) is np(1-p)

4. Find the value of E(X*?) if X has an N(0,1) distribution. (Give your answer as a number, not
an integral.)
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Chapter 9

The Exponential Distributions

The family of exponential distributions, Section has a number of remarkable properties, which
contribute to its widespread usage in probabilistic modeling. We’ll discuss those here.

9.1 Connection to the Poisson Distribution Family

Suppose the lifetimes of a set of light bulbs are independent and identically distributed (i.i.d.),
and consider the following process. At time 0, we install a light bulb, which burns an amount of
time X;. Then we install a second light bulb, with lifetime X5. Then a third, with lifetime X3,
and so on.

Let

T, =X +..+ X, (9.1)
denote the time of the r*"* replacement. Also, let N (t) denote the number of replacements up to and
including time t. Then it can be shown that if the common distribution of the X; is exponentially
distributed, the N(t) has a Poisson distribution with mean At. And the converse is true too: If

the X; are independent and identically distributed and N(t) is Poisson, then the X; must have
exponential distributions. In summary:

Theorem 17 Suppose X1, Xo, ... are i.i.d. nonnegative continuous random variables. Define

T.=X1+..+ X, (9.2)

175
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and

N(t) = max{k : T}, < t} (9.3)

Then the distribution of N(t) is Poisson with parameter X\t for all t if and only if the X; have an
exponential distribution with parameter .

In other words, N(t) will have a Poisson distribution if and only if the lifetimes are exponentially
distributed.

Proof
“Only if” part:

The key is to notice that the event X; > ¢ is exactly equivalent to N(t) = 0. If the first light bulb
lasts longer than t, then the count of burnouts at time t is 0, and vice versa. Then

P(X;>t) = P[N(t)=0] (see above equiv.) (9.4)
(A1) _x
= et (a2 (9.5)
= M (9.6)
Then
d — At —At
fx, () = ﬁ(l —e M) = Xe (9.7)

That shows that X; has an exponential distribution, and since the X; are i.i.d., that implies that
all of them have that distribution.

“If” part:

We need to show that if the X; are exponentially distributed with parameter A, then for u nonneg-
ative and each positive integer k,

A k_—Au
HMW=M=(%f (9.8)
The proof for the case k = 0 just reverses (9.4) above. The general case, not shown here, notes that
N(u) < k is equivalent to Ti11 > u. The probability of the latter event can be found by integrating
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(7.46) from u to infinity. One needs to perform k-1 integrations by parts, and eventually one arrives
at (9.8), summed from 1 to k, as required.

The collection of random variables N(t) ¢ > 0, is called a Poisson process.

The relation E[N(t)] = At says that replacements are occurring at an average rate of A per unit
time. Thus A is called the intensity parameter of the process. It is this “rate” interpretation
that makes A a natural indexing parameter in (|7.40]).

9.2 Memoryless Property of Exponential Distributions

One of the reasons the exponential family of distributions is so famous is that it has a property that
makes many practical stochastic models mathematically tractable: The exponential distributions
are memoryless.

9.2.1 Derivation and Intuition

What the term memoryless means for a random variable W is that for all positive t and u

PW >t4+ulW >t)=P(W >u) (9.9)

Any exponentially distributed random variable has this property. Let’s derive this:

PW >t+wuand W >t)

PW >t+ulW>t) = POV > 1) (9.10)
 PW>t+u)

= “pwrsg (9.11)
[0, Ae™ ds

f:oro e~ ds (812

= e M (9.13)

= P(W >u) (9.14)

We say that this means that “time starts over” at time t, or that W “doesn’t remember” what
happened before time t.
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It is difficult for the beginning modeler to fully appreciate the memoryless property. Let’s make it
concrete. Consider the problem of waiting to cross the railroad tracks on Eighth Street in Davis,
just west of J Street. One cannot see down the tracks, so we don’t know whether the end of the
train will come soon or not.

If we are driving, the issue at hand is whether to turn off the car’s engine. If we leave it on, and the
end of the train does not come for a long time, we will be wasting gasoline; if we turn it off, and
the end does come soon, we will have to start the engine again, which also wastes gasoline. (Or,
we may be deciding whether to stay there, or go way over to the Covell Rd. railroad overpass.)

Suppose our policy is to turn off the engine if the end of the train won’t come for at least s seconds.
Suppose also that we arrived at the railroad crossing just when the train first arrived, and we have
already waited for r seconds. Will the end of the train come within s more seconds, so that we will
keep the engine on? If the length of the train were exponentially distributed (if there are typically
many cars, we can model it as continuous even though it is discrete), Equation would say that
the fact that we have waited r seconds so far is of no value at all in predicting whether the train
will end within the next s seconds. The chance of it lasting at least s more seconds right now is no
more and no less than the chance it had of lasting at least s seconds when it first arrived.

9.2.2 Uniquely Memoryless

By the way, the exponential distributions are the only continuous distributions which are memory-
less. (Note the word continuous; in the discrete realm, the family of geometric distributions are also
uniquely memoryless.) This too has implications for the theory. A rough proof of this uniqueness
is as follows:

Suppose some continuous random variable V has the memoryless property, and let R(t) denote
1 — Fy(t). Then from (9.9), we would have

R(t+u)]/R(t) = R(u) (9.15)

or

R(t +u) = R(t)R(u) (9.16)

Differentiating both sides with respect to t, we’d have

Ri(t +u) = RI(t)R(u) (9.17)
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Setting t to 0, this would say

Ri(u) = RI(0)R(u) (9.18)

This is a well-known differential equation, whose solution is

R(u) =e (9.19)

which is exactly 1 minus the cdf for an exponentially distributed random variable.

9.2.3 Example: “Nonmemoryless” Light Bulbs

Suppose the lifetimes in years of light bulbs have the density 2t/15 on (1,4), 0 elsewhere. Say I've
been using bulb A for 2.5 years now in a certain lamp, and am continuing to use it. But at this
time I put a new bulb, B, in a second lamp. I am curious as to which bulb is more likely to burn
out within the next 1.2 years. Let’s find the two probabilities.

For bulb A:
P(L > 3.7)
P(L>37L>25)= ——-=0.24 9.20
(L>37L>25) = 57555 (9:20)
For bulb B:
4
P(X >1.2) = / 2t/15 dt = 0.97 (9.21)
1.2

So you can see that the bulbs do have “memory.” We knew this beforehand, since the exponential
distributions are the only continuous ones that have no memory.

9.3 Example: Minima of Independent Exponentially Distributed
Random Variables

The memoryless property of the exponential distribution (Section leads to other key properties.
Here’s a famous one:
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Theorem 18 Suppose W1, ..., Wy are independent random variables, with W; being exponentially
distributed with parameter \;. Let Z = min(W1,...,Wy). Then Z too is exponentially distributed
with parameter A1 + ... + A\g, and thus has mean equal to the reciprocal of that parameter

Comments:

e In “notebook” terms, we would have k+1 columns, one each for the W, and one for Z. For
any given line, the value in the Z column will be the smallest of the values in the columns
for Wy, ..., Wi; Z will be equal to one of them, but not the same one in every line. Then for
instance P(Z = W3) is interpretable in notebook form as the long-run proportion of lines in
which the Z column equals the W3 column.

e [t’s pretty remarkable that the minimum of independent exponential random variables turns
out again to be exponential. Contrast that with Section where it is found that the
minimum of independent uniform random variables does NOT turn out to have a uniform
distribution.

e The sum A\; +...+ ), in (a) should make good intuitive sense to you, for the following reasons.
Recall from Section that the parameter A in an exponential distribution is interpretable
as a “light bulb burnout rate.”

Say we have persons 1 and 2. Each has a lamp. Person i uses Brand i light bulbs, i = 1,2. Say
Brand i light bulbs have exponential lifetimes with parameter A;. Suppose each time person
i replaces a bulb, he shouts out, “New bulb!” and each time anyone replaces a bulb, I shout
out “New bulb!” Persons 1 and 2 are shouting at a rate of A\; and Ao, respectively, so I am
shouting at a rate of A\ + Ao.

Proof

Fz(t) = P(Z<t) (def. of cdf) (9.22)
= 1-P(Z>1t) (9.23)
= 1—-P(Wy>tand..and Wy >¢t) (min > ¢iff all W; > ¢) (9.24)
— 1-IL P(W;>1) (indep.) (9.25)
= 1-1IL e ™M (expon. distr.) (9.26)
I S VRS W (9.27)

Taking % of both sides proves the theorem.
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Also:

Theorem 19 Under the conditions in Theorem[18,

Ai

PW; < Wi, .., Wi, Wig1, .., W) = A+ o+ A

(9.28)
(There are k terms in the denominator, not k-1.)

Equation should be intuitively clear as well from the above “thought experiment” (in which
we shouted out “New bulb!”): On average, we have one new Brand 1 bulb every 1/A; time, so in a
long time t, we’ll have about tA; shouts for this brand. We’ll also have about tAy shouts for Brand
2. So, a proportion of about

A

_ 9.29
tA1 4+ tho ( )

of the shots are for Brand 1. Also, at any given time, the memoryless property of exponential
distributions implies that the time at which I shout next will be the minimum of the times at
which persons 1 and 2 shout next. This intuitively implies (9.28)).

Proof
Again consider the case k = 2, and then use induction.

Let Z = min(W7y, W3) as before. Then

P(Z:W1’W1=t):P(W2>t‘ let) (9.30)

(Note: We are working with continuous random variables here, so quantities like P(W; = t) are
0 (though actually P(Z = Wj) is nonzero). So, as mentioned in Section quantities like
P(Z =W, | Wi =t) really mean “the probability that W5 > t in the conditional distribution of Z
given W7.)

Since W7 and W5 are independent,

P(W2 >t | Wi = t) = P(W2 > t) = €_>\2t (9.31)
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Now use ([7.78]):

A1
AL+ A2

P(Z=W)) = / e Ml A2t gp — (9.32)
0]

as claimed.

This property of minima of independent exponentially-distributed random variables developed in
this section is key to the structure of continuous-time Markov chains, in Chapter

9.3.1 Example: Computer Worm

A computer science graduate student at UCD, Senthilkumar Cheetancheri, was working on a worm
alert mechanism. A simplified version of the model is that network hosts are divided into groups of
size g, say on the basis of sharing the same router. Each infected host tries to infect all the others
in the group. When g-1 group members are infected, an alert is sent to the outside world.

The student was studying this model via simulation, and found some surprising behavior. No
matter how large he made g, the mean time until an external alert was raised seemed bounded. He
asked me for advice.

I modeled the nodes as operating independently, and assumed that if node A is trying to infect
node B, it takes an exponentially-distributed amount of time to do so. This is a continuous-time
Markov chain. Again, this topic is much more fully developed in Chapter but all we need here
is the result of Section [0.3] that exponential distributions are “memoryless.”.

In state i, there are i infected hosts, each trying to infect all of the g-i noninfected hosts. When the
process reaches state g-1, the process ends; we call this state an absorbing state, i.e. one from
which the process never leaves.

Scale time so that for hosts A and B above, the mean time to infection is 1.0. Since in state i there
are i(g-i) such pairs, the time to the next state transition is the minimum of i(g-i) exponentially-
distributed random variables with mean 1. Theorem tells us that this minimum is also expo-
nentially distributed, with parameter i(g — i) - 1. Thus the mean time to go from state i to state
i+1 s 1/[i(g-1)).
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Then the mean time to go from state 1 to state g-1 is

g—1 1
. . (9.33)
2 i)
Using a calculus approximation, we have
| 19t 1 2
/ —— dx = / (—+ )dx=—-1In(g—1) (9.34)
1 (g —x) gsi z g-= g

The latter quantity goes to zero as g — oo. This confirms that the behavior seen by the student
in simulations holds in general. In other words, (9.33)) remains bounded as g — oo. This is a very
interesting result, since it says that the mean time to alert is bounded no matter how big our group
size is.

So, even though our model here was quite simple, probably overly so, it did explain why the student
was seeing the surprising behavior in his simulations.

9.3.2 Example: Electronic Components

Suppose we have three electronic parts, with independent lifetimes that are exponentially dis-
tributed with mean 2.5. They are installed simultaneously. Let’s find the mean time until the last
failure occurs.

Actually, we can use the same reasoning as for the computer worm example in Section The
mean time is simply

1/(3-0.4)+1/(2-0.4) +1/(1-0.4) (9.35)

9.4 A Cautionary Tale: the Bus Paradox

Suppose you arrive at a bus stop, at which buses arrive according to a Poisson process with intensity
parameter 0.1, i.e. 0.1 arrival per minute. Recall that the means that the interarrival times have an
exponential distribution with mean 10 minutes. What is the expected value of your waiting time
until the next bus?

Well, our first thought might be that since the exponential distribution is memoryless, “time starts
over” when we reach the bus stop. Therefore our mean wait should be 10.
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On the other hand, we might think that on average we will arrive halfway between two consecutive
buses. Since the mean time between buses is 10 minutes, the halfway point is at 5 minutes. Thus
it would seem that our mean wait should be 5 minutes.

Which analysis is correct? Actually, the correct answer is 10 minutes. So, what is wrong with the
second analysis, which concluded that the mean wait is 5 minutes? The problem is that the second
analysis did not take into account the fact that although inter-bus intervals have an exponential
distribution with mean 10, the particular inter-bus interval that we encounter is special.

9.4.1 Length-Biased Sampling

Imagine a bag full of sticks, of different lengths. We reach into the bag and choose a stick at
random. The key point is that not all pieces are equally likely to be chosen; the longer pieces will
have a greater chance of being selected.

Say for example there are 50 sticks in the bag, with ID numbers from 1 to 50. Let X denote the
length of the stick we obtain if select a stick on an equal-probability basis, i.e. each stick having
probability 1/50 of being chosen. (We select a random number I from 1 to 50, and choose the stick
with ID number I.) On the other hand, let Y denote the length of the stick we choose by reaching
into the bag and pulling out whichever stick we happen to touch first. Intuitively, the distribution
of Y should favor the longer sticks, so that for instance £Y > EX.

Let’s look at this from a “notebook” point of view. We pull a stick out of the bag by random ID
number, and record its length in the X column of the first line of the notebook. Then we replace
the stick, and choose a stick out by the “first touch” method, and record its length in the Y column
of the first line. Then we do all this again, recording on the second line, and so on. Again, because
the “first touch” method will favor the longer sticks, the long-run average of the Y column will be
larger than the one for the X column.

Another example was suggested to me by UCD grad student Shubhabrata Sengupta. Think of a
large parking lot on which hundreds of buckets are placed of various diameters. We throw a ball
high into the sky, and see what size bucket it lands in. Here the density would be proportional to
area of the bucket, i.e. to the square of the diameter.

Similarly, the particular inter-bus interval that we hit is likely to be a longer interval. To see this,
suppose we observe the comings and goings of buses for a very long time, and plot their arrivals
on a time line on a wall. In some cases two successive marks on the time line are close together,
sometimes far apart. If we were to stand far from the wall and throw a dart at it, we would hit
the interval between some pair of consecutive marks. Intuitively we are more apt to hit a wider
interval than a narrower one.

The formal name for this is length-biased sampling.
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Once one recognizes this and carefully derives the density of that interval (see below), we discover
that that interval does indeed tend to be longer—so much so that the expected value of this interval
is 20 minutes! Thus the halfway point comes at 10 minutes, consistent with the analysis which
appealed to the memoryless property, thus resolving the “paradox.”

In other words, if we throw a dart at the wall, say, 1000 times, the mean of the 1000 intervals we
would hit would be about 20. This in contrast to the mean of all of the intervals on the wall, which
would be 10.

9.4.2 Probability Mass Functions and Densities in Length-Biased Sampling

Actually, we can intuitively reason out what the density is of the length of the particular inter-bus
interval that we hit, as follows.

First consider the bag-of-sticks example, and suppose (somewhat artificially) that stick length X is
a discrete random variable. Let Y denote the length of the stick that we pick by randomly touching
a stick in the bag.

Again, note carefully that for the reasons we’ve been discussing here, the distributions of X and Y
are different. Say we have a list of all sticks, and we choose a stick at random from the list. Then
the length of that stick will be X. But if we choose by touching a stick in the bag, that length will
be Y.

Now suppose that, say, stick lengths 2 and 6 each comprise 10% of the sticks in the bag, i.e.

px(2) =px(6) = 0.1 (9.36)

Intuitively, one would then reason that

py (6) = 3py (2) (9.37)

In other words, even though the sticks of length 2 are just as numerous as those of length 6, the
latter are three times as long, so they should have triple the chance of being chosen. So, the chance
of our choosing a stick of length j depends not only on px(j) but also on j itself.

We could write that formally as

py (j) o< jpx (j) (9.38)
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where o is the “is proportional to” symbol. Thus

py (j) = cjpx (j) (9.39)

for some constant of proportionality c.

But a probability mass function must sum to 1. So, summing over all possible values of j (whatever
they are), we have

1= Zpyo) = chpx<j> (9.40)

That last term is ¢ E(X)! So, ¢ = 1/EX, and

1

py(j) = EX jpx(4) (9.41)
The continuous analog of (9.41) is
fr(t) = g -t (0 (942
vit) = % tix .

So, for our bus example, in which fx () = 0.1e7%, ¢ > 0 and EX = 10,

fy(t) = 0.01te™ 1 (9.43)

You may recognize this as an Erlang density with r = 2 and A = 0.1. That distribution does indeed
have mean 20, consistent with the discussion at the end of Section [9.4.1]



Chapter 10

Stop and Review: Probability
Structures

There’s quite a lot of material in the preceding chapters, but it’s crucial that you have a good
command of it before proceeding, as the coming chapters will continue to build on it.

With that aim, here are the highlights of what we’ve covered so far, with links to the places at
which they were covered:

e expected value (Section [3.5):

Consider random variables X and Y (not assumed independent), and constants ¢; and cy. We
have:

E(X+Y)=EX+EY (10.1)
E(1X)=nEX (10.2)
E(aX +Y)=caEX +FEY (10.3)
By induction,
E(a1Uy + ... + ayUy) = a1EXy + ... + ap EX, (10.4)

for random variables U; and constants a;.

187
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e variance (Section [3.6):
For any variable W,

Var(W) = E[(W — EW)?| = E(W?) — (EW)?

(10.5)

Consider random variables X and Y (now assumed independent), and constants ¢; and cs.

We have:

Var(X+Y)=Var(X)+ Var(Y)

Var(e1X) = EVar(X)

By induction,

Var(aiUy + ... + apUy) = a2Var(Uy) + ... + a2Var(Uy)

for independent random variables U; and constants a;.
e indicator random variables (Section :
Equal 1 or 0, depending on whether a specified event A occurs.
If T is an indicator random variable for the event A, then
ET = P(A), Var(T)= P(A)[1 — P(4)]

e distributions:

— cdfs(Section [7.3):

For any random variable X,

Fx(t)=P(X <t), —oco<t<oo

— pmfs (Section [3.13)):

For a discrete random variable X,

(10.6)

(10.7)

(10.8)

(10.9)

(10.10)

(10.11)
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— density functions (Section [3.13)):

For a continuous random variable X,

fx(t) = %Fx(t), —00<t< oo (10.12)

and

P(X in A) = /AfX(s) ds (10.13)

e famous parametric families of distributions:

Just like one can have a family of curves, say sin(27mné(t) (different curve for each n and 6),
certain families of distributions have been found useful. They’re called parametric families,
because they are indexed by one or more parameters, anlagously to n and 6 above.

discrete:

— geometric (Section [4.2)
Number of i.i.d. trials until first success. For success probability p:

pn(k) = (1—p)*p (10.14)
1-p
EN =1/p, Var(N)=— (10.15)
p
— binomial (Section [1.3):
Number of successes in n i.i.d. trials, probability p of success per trial:
n _
() = () -t (10.16)
EN =np, Var(N)=np(l—p) (10.17)
— Poisson (Section [4.5):
Has often been found to be a good model for counts over time periods.
One parameter, often called A. Then
—)\)\k
pn(k) = eT,k:O,LQ,... (10.18)

EN =Var(N) = A (10.19)
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— negative binomial (Section [4.4)):
Number of i.i.d. trials until r** success. For success probability p:

k—1

ot = ()= p k= (10.20)

1 1-—
E(N)=r-~, Var(N)=r ~—" (10.21)

p p

continuous:
— uniform (Section [7.6.1.1):
All points “equally likely.” If the interval is (q,r),
1
fx(t) = , g<t<r (10.22)
r—q
1

BEX ==17" var(D) = 5r—a” (10.23)

— normal (Gaussian) (Section [7.6.2):

“Bell-shaped curves.” Useful due to Central Limit Theorem (Section [8.9 (Thus good
approximation to binomial distribution.)

Closed under affine transformations (Section [8.1.1))!
Parameterized by mean and variance, 1 and o2:

1 2
fx(t) = — e 05(5")" o0 < t < 00 (10.24)
Yixea

exponential (Section [7.6.3):

— Memoryless! One parameter, usually called A. Connectedt to Poisson family.

fx(t) == Xe™,0 <t < o0 (10.25)

EX =1/)\, Var(X)=1/)? (10.26)
— gamma (Section [7.6.4):

Special case, Erlang family, arises as the distribution of the sum of i.i.d. exponential
random variables.

1

Nt le= M 150 10.27
N0 M (10-27)

fx(t) =
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e iterated expected values:

— For discrete U (4.63)),

E(V)=) PU=c)E(V|U=c) (10.28)

— For continuous V (7.77)),

E(W) :/OO frt) E(W |V =t) dt (10.29)
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Chapter 11

Introduction to Continuous-Time
Markov Chains

In the Markov chains we analyzed in Chapter [6] events occur only at integer times. However, many
Markov chain models are of the continuous-time type, in which events can occur at any times.
Here the holding time, i.e. the time the system spends in one state before changing to another
state, is a continuous random variable.

11.1 Continuous-Time Markov Chains

The state of a Markov chain at any time now has a continuous subscript. Instead of the chain
consisting of the random variables X,,, n = 1,2,3, ..., it now consists of {X; : t € [0,00)}. The
Markov property is now

P(Xipy = k| X, for all 0 < s < t) = P(X¢y = k| X;) for all t,u >0 (11.1)

11.2 Holding-Time Distribution

In order for the Markov property to hold, the distribution of holding time at a given state needs
to be “memoryless.” You may recall that exponentially distributed random variables have this
property. In other words, if a random variable W has density

ft)=xe M (11.2)

193
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for some A then

PW >r+s|W>r)=P(W >s) (11.3)

for all positive r and s. Actually, one can show that exponential distributions are the only contin-
uous distributions which have this property. Therefore, holding times in Markov chains must be
exponentially distributed.

Because it is central to the Markov property, the exponential distribution is assumed for all basic
activities in Markov models. In queuing models, for instance, both the interarrival time and service
time are assumed to be exponentially distributed (though of course with different values of \). In
reliability modeling, the lifetime of a component is assumed to have an exponential distribution.

Such assumptions have in many cases been verified empirically. If you go to a bank, for example, and
record data on when customers arrive at the door, you will find the exponential model to work well
(though you may have to restrict yourself to a given time of day, to account for nonrandom effects
such as heavy traffic at the noon hour). In a study of time to failure for airplane air conditioners,
the distribution was also found to be well fitted by an exponential density. On the other hand, in
many cases the distribution is not close to exponential, and purely Markovian models cannot be
used for anything more than a rough approximation.

11.2.1 The Notion of “Rates”

A key point is that the parameter A in has the interpretation of a rate, in the sense discussed
in Theorem To review, first, recall that 1/\ is the mean. Say light bulb lifetimes have an
exponential distribution with mean 100 hours, so A = 0.01. In our lamp, whenever its bulb burns
out, we immediately replace it with a new on. Imagine watching this lamp for, say, 100,000 hours.
During that time, we will have done approximately 100000/100 = 1000 replacements. That would
be using 1000 light bulbs in 100000 hours, so we are using bulbs at the rate of 0.01 bulb per hour.
For a general A\, we would use light bulbs at the rate of A bulbs per hour. This concept is crucial
to what follows.

11.3 Stationary Distribution

In analogy to (6.4)), we again define 7; to be the long-run proportion of time the system is in state
i, where now Nj; is the proportion of the time spent in state i, during (0,t). We again will derive a
system of linear equations to solve for these proportions, using a flow out = flow in argument.



11.3. STATIONARY DISTRIBUTION 195

11.3.1 Intuitive Derivation

To this end, let A\; denote the parameter in the holding-time distribution at state i, and define the
quantities

Prs = ArDrs (114)

where p, is that probably that, when a jump out of state r occurs, the jump is to state s.

The equations has the following interpretation. Note:

e )\, is the rate of jumps out of state r, so
e \.p.s is the rate of jumps from state r to state s, and since
e 7, is the long-run proportion of the time we are in state r, then

e T, \-prs is the rate of jumps from r to s

Then, equating the rate of transitions into i and the rate out of i, we have

7ri)\i = Zﬁj)‘jpji (115)
JF

These equations can then be solved for the ;.

11.3.2 Computation

Motivated by (11.5)), define the matrix Q by

G = Ajpjis i ] (11.6)
R R P '

Q is called the infinitesimal generator of the system, so named because it is the basis of the
system of differential equations that can be used to find the finite-time probabilistic behavior of
X

Then (11.5) is stated in matrix form as

Q=0 (11.7)
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But the m; must sum to 1, so the above equation is subject to

Ur=1 (11.8)

where 1 denotes a (column) vector of n 1s, where n is the number of states.

In view of (11.8), the system (11.7) is redundant; there are n equations for n-1 unknowns, So,
replace the last equation in (11.7]) by (L1.8]).

Here is R code to solve the system:

findpicontin <— function(q) {
n <— nrow(q)
q[n7] <= rep(l,n)
rhs <— c(rep(0,n—1),1)
pivec <— solve(q,rhs)
return (pivec)

}

To formulate the equations ([L1.5), we’ll need a property of exponential distributions derived in
Section [9.3] copied here for convenience:

Theorem 20 Suppose W1, ..., Wi are independent random variables, with W; being exponentially
distributed with parameter \;. Let Z = min(W1, ..., Wy). Then

(a) Z is exponentially distributed with parameter A1 + ... + A

(b) P(Z=Wi) = 5555

11.4 Example: Machine Repair

Suppose the operations in a factory require the use of a certain kind of machine. The manager has
installed two of these machines. This is known as a gracefully degrading system: When both
machines are working, the fact that there are two of them, instead of one, leads to a shorter wait
time for access to a machine. When one machine has failed, the wait is longer, but at least the
factory operations may continue. Of course, if both machines fail, the factory must shut down until
at least one machine is repaired.

Suppose the time until failure of a single machine, carrying the full load of the factory, has an
exponential distribution with mean 20.0, but the mean is 25.0 when the other machine is working,
since it is not so loaded. Repair time is exponentially distributed with mean 8.0.
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We can take as our state space {0,1,2}, where the state is the number of working machines. Now,
let us find the parameters A; and pj; for this system. For example, what about A2? The holding
time in state 2 is the minimum of the two lifetimes of the machines, and thus from the results of
Section has parameter ﬁ + ﬁ = 0.08.

For A1, a transition out of state 1 will be either to state 2 (the down machine is repaired) or to state
0 (the up machine fails). The time until transition will be the minimum of the lifetime of the up
machine and the repair time of the down machine, and thus will have parameter Wl.o + % = 0.175.
Similarly, Ao = g + g5 = 0.25.

It is important to understand how the Markov property is being used here. Suppose we are in state
1, and the down machine is repaired, sending us into state 2. Remember, the machine which had
already been up has “lived” for some time now. But the memoryless property of the exponential
distribution implies that this machine is now “born again.”

What about the parameters pj;? Well, po; is certainly easy to find; since the transition 2 — 1 is
the only transition possible out of state 2, ps; = 1.

For pi9, recall that transitions out of state 1 are to states 0 and 2, with rates 1/20.0 and 1/8.0,
respectively. So,

1/8.0

= 072 11.9
1/20.0 +1/8.0 (11.9)

Pb12

Working in this manner, we finally arrive at the complete system of equations ((11.5)):

m2(0.08) = m1(0.125) (11.10)
m1(0.175) = m2(0.08) + m(0.25) (11.11)
m0(0.25) = m1(0.05) (11.12)
In matrix terms:
—0.25 0.05 0
0.25 —-0.175 0.08 | =0 (11.13)

0 0125 -0.08

Let’s find the solution:

> q
(1] [,2] [,3]
[1,] —0.25 0.050 0.00
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[2,] 0.25 —0.175 0.08

(3,] 0.00 0.125 —0.08

> findpicontin(q)

[1] 0.07239819 0.36199095 0.56561086
So,

7 = (0.072,0.362, 0.566) (11.14)

Thus for example, during 7.2% of the time, there will be no machine available at all.

Several variations of this problem could be analyzed. We could compare the two-machine system
with a one-machine version. It turns out that the proportion of down time (i.e. time when no
machine is available) increases to 28.6%. Or we could analyze the case in which only one repair
person is employed by this factory, so that only one machine can be repaired at a time, compared
to the situation above, in which we (tacitly) assumed that if both machines are down, they can be
repaired in parallel. We leave these variations as exercises for the reader.

11.5 Example: Migration in a Social Network

The following is a simplified version of research in online social networks.

There is a town with two social groups, with each person being in exactly one group. People arrive
from outside town, with exponentially distributed interarrival times at rate «, and join one of the
groups with probability 0.5 each. Each person will occasionally switch groups, with one possible
“switch” being to leave town entirely. A person’s time before switching is exponentially distributed
with rate o; the switch will either be to the other group or to the outside world, with probabilities
q and 1-q, respectively. Let the state of the system be (i,j), where i and j are the number of current
members in groups 1 and 2, respectively.

Let’s find a typical balance equation, say for the state (8,8):

Tss)(a+16-0) = (T98) +T(89)  90(1 —q) + (79,7) + T(7.9)) - 90¢ + (T8 7) + T(7,8)) - 0.5 (11.15)
The reasoning is straightforward. How can we move out of state (8,8)? Well, there could be an
arrival (rate ), or any one of the 16 people could switch groups (rate 160), etc.

Now, in a “going beyond finding the 7” vein, let’s find the long-run fraction of transfers into group
1 that come from group 2, as opposed to from the outside.
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The rate of transitions into that group from outside is 0.5c. When the system is in state (i,j), the
rate of transitions into group 1 from group 2 is jogq, so the overall rate is ZZ i T(i,j)J04- Thus the
fraction of new members coming in to group 1 from transfers is

2ij (i) Joq
0.5cc+ 3, i m(i.j)Joq

(11.16)

The above reasoning is very common, quite applicable in many situations. By the way, note that
Zi,j T(,)J0q = cqEN, where N is the number of members of group 2.

11.6 Birth/Death Processes

We noted earlier that the system of equations for the m; may not be easy to solve. In many cases, for
instance, the state space is infinite and thus the system of equations is infinite too. However, there is
a rich class of Markov chains for which closed-form solutions have been found, called birth/death
processesE]

Here the state space consists of (or has been mapped to) the set of nonnegative integers, and pj;
is nonzero only in cases in which | — j| = 1. (The name “birth/death” has its origin in Markov
models of biological populations, in which the state is the current population size.) Note for
instance that the example of the gracefully degrading system above has this form. An M/M/1
queue—one server, “Markov” (i.e. exponential) interarrival times and Markov service times—is
also a birth/death process, with the state being the number of jobs in the system.

Because the pj; have such a simple structure, there is hope that we can find a closed-form solution
for the m;, and it turns out we can. Let uw; = p; ;41 and d; = p;;i—1 (‘0 for p,” ‘d’ for “down”).
Then (?7?) is

Tip1dit1 + Ti—1Uj—1] = TN = Fi(ui + di), 1>1 (11.17)
7T1d1 = 7T0>\0 = TToUQ (11.18)

In other words,
7Ti+1di+1 — T U; = 7Tidi — TMi—1U;—1, 1 > 1 (11.19)

'Though we treat the continuous-time case here, there is also a discrete-time analog.
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7T1d1 — TToUp = 0 (11.20)

Applying (11.19)) recursively to the base (11.20)), we see that

7Tidz' — Tj—1U;—1 = 0, 7 Z 1 (11.21)
so that
M=ol > (11.22)
d;
and thus
T = ToT; (11.23)
where
ri = ;;:17“2—1 (11.24)
k

where r; = 0 for ¢ > m if the chain has no states past m.

Then since the m; must sum to 1, we have that

1
RS

and the other m; are then found via (11.23]).

o (11.25)

Note that the chain might be finite, i.e. have u; = 0 for some i. In that case it is still a birth/death
chain, and the formulas above for 7 still apply.

11.7 Cell Communications Model

Let’s consider a more modern example of this sort, involving cellular phone systems. (This is an
extension of the example treated in K.S. Trivedi, Probability and Statistics, with Reliability and
Computer Science Applications (second edition), Wiley, 2002, Sec. 8.2.3.2, which is in turn is based
on two papers in the IEEE Transactions on Vehicular Technology.)
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We consider one particular cell in the system. Mobile phone users drift in and out of the cell as
they move around the city. A call can either be a new call, i.e. a call which someone has just
dialed, or a handoff call, i.e. a call which had already been in progress in a neighboring cell but
now has moved to this cell.

Each call in a cell needs a channelE| There are n channels available in the cell. We wish to give
handoff calls priority over new callsE| This is accomplished as follows.

The system always reserves g channels for handoff calls. When a request for a new call (i.e. a
non-handoff call) arrives, the system looks at X, the current number of calls in the cell. If that
number is less than n-g, so that there are more than g idle channels available, the new call is
accepted; otherwise it is rejected.

We assume that new calls originate from within the cells according to a Poisson process with rate
A1, while handoff calls drift in from neighboring cells at rate Ay. Meanwhile, call durations are
exponential with rate p1, while the time that a call remains within the cell is exponential with rate

2.

11.7.1 Stationary Distribution

We again have a birth/death process, though a bit more complicated than our earlier ones. Let
A= A1+ A2 and = p1 4+ po. Then here is a sample balance equation, focused on transitions into
(left-hand side in the equation) and out of (right-hand side) state 1:

oA + T2 = w1 (A + 1) (11.26)

Here’s why: How can we enter state 17 Well, we could do so from state 0, where there are no calls;
this occurs if we get a new call (rate A1) or a handoff call (rate A2. In state 2, we enter state 1 if
one of the two calls ends (rate p1) or one of the two calls leaves the cell (rate pz). The same kind
of reasoning shows that we leave state 1 at rate A + pu.

As another example, here is the equation for state n-g:

Tn—glA2 + (0= g)pu] = Tp—gs1- (R =g+ p+ Tpg_1A (11.27)

Note the term A in (11.27)), rather than A as in (11.26]).

2This could be a certain frequency or a certain time slot position.
3We would rather give the caller of a new call a polite rejection message, e.g. “No lines available at this time,
than suddenly terminate an existing conversation.
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Using our birth/death formula for the m;, we find that

Ak
TOFT > k < n-g
T = n— i 11.28
k {WOAM gAlf (n g)’ k > n-g ( )

where A = \/p, Ay = A2/p and

-1

Ar=(n=9) (11.29)

11.7.2 Going Beyond Finding the 7

One can calculate a number of interesting quantities from the m;:

e The probability of a handoff call being rejected is .

e The probability of a new call being dropped is

zn: T (11.30)

k=n—g

e Since the per-channel utilization in state i is i/n, the overall long-run per-channel utilization
is

Z”i% (11.31)

1=0

e The long-run proportion of accepted calls which are handoff calls is the rate at which handoff
calls are accepted, divided by the rate at which calls are accepted:

A2 Z?:_ol ur
A Z?:_og_l T + A2 Z?;ol U

(11.32)



Chapter 12

Covariance and Random Vectors

Most applications of probability and statistics involve the interaction between variables. For in-
stance, when you buy a book at Amazon.com, the software will likely inform you of other books
that people bought in conjunction with the one you selected. Amazon is relying on the fact that
sales of certain pairs or groups of books are correlated.

Thus we need the notion of distributions that describe how two or more variables vary together.
This chapter develops that notion, which forms the very core of statistics.

12.1 Measuring Co-variation of Random Variables

12.1.1 Covariance

Definition 21 The covariance between random variables X and Y is defined as
Cov(X,Y)=FE[(X —EX)(Y — EY)] (12.1)

Suppose that typically when X is larger than its mean, Y is also larger than its mean, and vice
versa for below-mean values. Then will likely be positive. In other words, if X and Y are
positively correlated (a term we will define formally later but keep intuitive for now), then their
covariance is positive. Similarly, if X is often smaller than its mean whenever Y is larger than its
mean, the covariance and correlation between them will be negative. All of this is roughly speaking,
of course, since it depends on how much and how often X is larger or smaller than its mean, etc.

203
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Linearity in both arguments:

Cov(aX +bY,cU +dV) = acCov(X,U) + adCov(X,V) + bcCov(Y,U) + bdCov(Y,V)  (12.2)

for any constants a, b, ¢ and d.

Insensitivity to additive constants:

Cov(X,Y +q) = Cov(X,Y) (12.3)

for any constant q and so on.

Covariance of a random variable with itself:

Cov(X,X) = Var(X) (12.4)

for any X with finite variance.

Shortcut calculation of covariance:

Cov(X,Y)=E(XY)— EX-EY (12.5)

The proof will help you review some important issues, namely (a) E(U+V) = EU + EV, (b) E(cU)
= ¢ EU and Ec = c for any constant ¢, and (¢) EX and EY are constants in ((12.5]).

Cov(X,Y) = E[(X—-EX)(Y—FEY)] (definition) (12.6)
— E[XY -EX-Y-EY-X+EX EY] (algebra) (12.7)
— E(XY)+E|-EX Y]+ E[-EY - X] + E[EX - EY] (E[U+V]=EU+EY}2.8)
— E(XY)-EX-EY (E[U] = cEU, Ec = c) (12.9)

Variance of sums:

Var(X+Y) =Var(X)+ Var(Y) 4+ 2Cov(X,Y) (12.10)

This comes from (12.5), the relation Var(X) = E(X?) — EX? and the corresponding one for Y.
Just substitute and do the algebra.
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By induction, (|12.10) generalizes for more than two variables:

Var(Wi + ...+ W,) = Z Var(W;) + 2 Z Cov(W;, W) (12.11)
i=1 1<j<i<r

12.1.2 Example: Variance of Sum of Nonindependent Variables

Consider random variables X; and X, for which Var(X;) = 1.0 fori = 1,2, and Cov(X1, X2) = 0.5.
Let’s find Var(X; + X2).

This is quite straightforward, from (12.10)):
Var(X1 + Xo) = Var(Xy) + Var(Xs) + 2Cov(Xy, X2) = 3 (12.12)

12.1.3 Example: the Committee Example Again

Let’s find Var(M) in the committee example of Section In (3.97), we wrote M as a sum of

indicator random variables:

M=G1+ G+ G3+ Gy (12.13)
and found that
2
PG;=1)= 3 (12.14)

for all i.

You should review why this value is the same for all i, as this reasoning will be used again below.
Also review Section [3.91

Applying (12.11)) to (12.13]), we have

Var(M) = 4Var(G1) + 12Cov(G1.G2) (12.15)

Finding that first term is easy, from ([3.79):

Var(Gy) = = - <1 - ;) _ g (12.16)

W o
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Now, what about Cov(G1.G2)? Equation (12.5)) will be handy here:

Cov(G1.G2) = E(G1G2) — E(G1)E(G2) (12.17)
That first term in is
E(G1G3) = P(Gy=1and Gy =1) (12.18)
= P(choose a man on both the first and second pick) (12.19)
_ g . g (12.20)
_ % (12.21)

That second term in (12.17)) is, again from Section

<§)2 - g (12.22)

All that’s left is to put this together in (|12.15)), left to the reader.

12.2 Correlation

Covariance does measure how much or little X and Y vary together, but it is hard to decide
whether a given value of covariance is “large” or not. For instance, if we are measuring lengths in
feet and change to inches, then shows that the covariance will increase by 122 = 144. Thus
it makes sense to scale covariance according to the variables’ standard deviations. Accordingly, the
correlation between two random variables X and Y is defined by

(X, Y) = XY (12.23)

B VVar(X)y/Var(Y)

So, correlation is unitless, i.e. does not involve units like feet, pounds, etc.

It is shown later in this chapter that

e —1<p(X,V)<1

e [p(X,Y)| =1if and only if X and Y are exact linear functions of each other, i.e. Y = ¢X +
d for some constants ¢ and d
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12.2.1 Example: a Catchup Game

Consider the following simple game. There are two players, who take turns playing. One’s position
after k turns is the sum of one’s winnings in those turns. Basically, a turn consists of generating a
random U(0,1) variable, with one difference—if that player is currently losing, he gets a bonus of
0.2 to help him catch up.

Let X and Y be the total winnings of the two players after 10 turns. Intuitively, X and Y should
be positively correlated, due to the 0.2 bonus which brings them closer together. Let’s see if this is
true.

Though very simply stated, this problem is far too tough to solve mathematically in an elementary
course (or even an advanced one). So, we will use simulation. In addition to finding the correlation
between X and Y, we’ll also find Fxy(5.8,5.2) = P(X <5.8and Y <5.2).

taketurn <- function(a,b) {
win <- runif(1)
if (a >= b) return(win)
else return(win+0.2)

}

nturns <- 10
xyvals <- matrix(nrow=nreps,ncol=2)
for (rep in 1:nreps) {
x <- 0
y <- 0
for (turn in 1l:nturns) {
# x’s turn
x <- x + taketurn(x,y)
# y’s turn
y <= y + taketurn(y,x)

xyvals([rep,] <- c(x,y)

}
print (cor(xyvals[,1],xyvals[,2]))

The output is 0.65. So, X and Y are indeed positively correlated as we had surmised.

Note the use of R’s built-in function cor() to compute correlation, a shortcut that allows us to
avoid summing all the products xy and so on, from (12.5). The reader should make sure he/she
understands how this would be done.

12.3 Sets of Independent Random Variables

Recall from Section 3.3
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Definition 22 Random variables X and Y are said to be independent if for any sets I and J,
the events {X is in I} and {Y is in J} are independent, i.e. P(X isin I and Y is in J) = P(X is
in I) P(Y isin J).

Intuitively, though, it simply means that knowledge of the value of X tells us nothing about the
value of Y, and vice versa.

Great mathematical tractability can be achieved by assuming that the X; in a random vector
X = (X1, ..., Xk) are independent. In many applications, this is a reasonable assumption.

12.3.1 Properties

In the next few sections, we will look at some commonly-used properties of sets of independent
random variables. For simplicity, consider the case k = 2, with X and Y being independent (scalar)
random variables.

12.3.1.1 Expected Values Factor

If X and Y are independent, then
E(XY)=EX)E(Y) (12.24)

12.3.1.2 Covariance Is 0

If X and Y are independent, we have

Cov(X,Y) =0 (12.25)

and thus
p(X,Y) =0 as well.

This follows from ([12.24)) and (12.5)).

However, the converse is false. A counterexample is the random pair (X,Y’) that is uniformly
distributed on the unit disk, {(s,t) : s> +t? < 1}. Clearly 0 = E(XY) = EX = EY due to the
symmetry of the distribution about (0,0), so Cov(X,Y) = 0 by (12.5).

But X and Y just as clearly are not independent. If for example we know that X > 0.8, say, then
Y? < 1—0.8% and thus Y| < 0.6. If X and Y were independent, knowledge of X should not tell
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us anything about Y, which is not the case here, and thus they are not independent. If we also
know that X and Y are bivariate normally distributed (Section [13.5.2.1)), then zero covariance does
imply independence.

12.3.1.3 Variances Add

If X and Y are independent, then we have

Var(X+Y)=Var(X) + Var(Y). (12.26)

This follows from (|12.10) and ((12.24)).

12.3.2 Examples Involving Sets of Independent Random Variables
12.3.2.1 Example: Dice

In Section [12.2.1], we speculated that the correlation between X, the number on the blue die, and
S, the total of the two dice, was positive. Let’s compute it.

Write S = X + Y, where Y is the number on the yellow die. Then using the properties of covariance
presented above, we have that

Cov(X,S) = Cov(X,X+Y) (def. of S) (12.27)
= Cov(X,X)+ Cov(X,Y) (from (12.2))) (12.28)
= Var(X)+0 (from (12.4), (12.25)) (12.29)
Also, from ,
Var(S)=Var(X+Y)=Var(X)+ Var(Y) (12.30)

But Var(Y) = Var(X). So the correlation between X and S is

Var(X)

= = 0.707 12.31
VVar(X)\/2Var(X) ( )

p(X,S)

Since correlation is at most 1 in absolute value, 0.707 is considered a fairly high correlation. Of
course, we did expect X and S to be highly correlated.
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12.3.2.2 Example: Variance of a Product

Suppose X3 and X5 are independent random variables with EX; = p; and Var(X;) = O’iz, i=1.2
Let’s find an expression for Var(X;Xs).

Var(X1Xo) = BE(X2X2) - [E(X1X)? (B41) (12.32)

= B(X])-E(X3) - pips  (12:29) (12.33)

= (0F + i) (03 + u3) — pins (12.34)

= 0lo} + pios + piot (12.35)

Note that E(X?%) = o? + u? by virtue of (3.41)).

12.3.2.3 Example: Ratio of Independent Geometric Random Variables

Suppose X and Y are independent geometrically distributed random variables with success proba-
bility p. Let Z = X/Y. We are interested in EZ and Fy.

First, by (12.24]), we have

1

EZ = EX- ?) (12.36)
1

- BEX-E(y) (1224 (12.37)

1 1
= —- E(?) (mean of geom is 1/p) (12.38)

p
So we need to find E(1/Y). Using (3.36]), we have
B =3 Lyt (12.39)
y/ T &ge T hr '

=1

Unfortunately, no further simplification seems possible.

Now let’s find Fz(m) for a positive integer m.
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Fz(m) = P <;{ < m) (12.40)
= P(X <mY) (12.41)
= iP(Y =) P(X <mY[Y =) (12.42)
=1
- i(l —p)"'p P(X < mi) (12.43)
=1
= > Q-p) -1 -p™] (12.44)
=1

this last step coming from (4.16]).
We can actually reduce ([12.44)) to closed form, by writing

(1 —p)ifl(l _ p)mi _ (1 _p)miJrifl _ L

— [(1—p)y™ 1]’ (12.45)

and then using (4.6]). Details are left to the reader.

12.4 Matrix Formulations

(Note that there is a review of matrix algebra in Appendix ?7.)

In your first course in matrices and linear algebra, your instructor probably motivated the notion
of a matrix by using an example involving linear equations, as follows.

Suppose we have a system of equations
ai121 + ... + aipnTy =b;, i=1,...,n, (1246)

where the z; are the unknowns to be solved for.

This system can be represented compactly as

AX = B, (12.47)

where A is nxn and X and B are nxl1.
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That compactness coming from the matrix formulation applies to statistics too, though in different
ways, as we will see. (Linear algebra in general is used widely in statistics—matrices, rank and
subspace, eigenvalues, even determinants.)

When dealing with multivariate distributions, some very messy equations can be greatly compact-
ified through the use of matrix algebra. We will introduce this here.

Throughout this section, consider a random vector W = (Wi, ..., Wj)" where ' denotes matrix
transpose, and a vector written horizontally like this without a ’ means a row vector.

12.4.1 Properties of Mean Vectors

In statistics, we frequently need to find covariance matrices of linear combinations of random
vectors.

Definition 23 The expected value of W is defined to be the vector

EW = (EW, ..., EW}) (12.48)

The linearity of the components implies that of the vectors:

For any scalar constants ¢ and d, and any random vectors V and W, we have

E(cV +dW) = cEV + dEW (12.49)

where the multiplication and equality is now in the vector sense.
Also, multiplication by a constant matrix factors:

If A is a nonrandom matrix having k columns, then
E(AW) = AEW (12.50)

12.4.2 Covariance Matrices

Definition 24 The covariance matriz Cov(W) of W = (Wh,...,Wy)' is the k x k matriz whose
(i,7)" element is Cov(W;, Wj).

Note that that implies that the diagonal elements of the matrix are the variances of the W;, and
that the matrix is symmetric.
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As you can see, in the statistics world, the Cov() notation is “overloaded.” If it has two arguments,
it is ordinary covariance, between two variables. If it has one argument, it is the covariance matrix,
consisting of the covariances of all pairs of components in the argument. When people mean the
matrix form, they always say so, i.e. they say “covariance MATRIX” instead of just “covariance.”

The covariance matrix is just a way to compactly do operations on ordinary covariances. Here are
some important properties:

Say c is a constant scalar. Then ¢W is a k-component random vector like W, and

Cov(cW) = 2Cov(W) (12.51)
Suppose V and W are independent random vectors, meaning that each component in V is inde-

pendent of each component of W. (But this does NOT mean that the components within V are
independent of each other, and similarly for W.) Then

Cov(V 4+ W) =Cov(V)+ Cov(W) (12.52)

Of course, this is also true for sums of any (nonrandom) number of independent random vectors.

In analogy with (3.41)), for any random vector Q,
Cov(Q) = BE(QQ') — EQ (EQ) (12.53)

12.4.3 Covariance Matrices Linear Combinations of Random Vectors

Suppose A is an r x k but nonrandom matrix. Then AW is an r-component random vector, with
its i" element being a linear combination of the elements of W. Then one can show that

Cov(AW) = A Cov(W) A’ (12.54)
An important special case is that in which A consists of just one row. In this case AW is a vector

of length 1—a scalar! And its covariance matrix, which is of size 1 x 1, is thus simply the variance
of that scalar. In other words:

Suppose we have a random vector U = (Uy, ..., Uy)" and are interested in the variance
of a linear combination of the elements of U,

Y=cU +..4+cUx (12.55)
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for a vector of constants ¢ = (cy, ..., )"
Then

Var(Y) = dCov(U)c (12.56)

12.4.4 Example: (X,S) Dice Example Again

Recall Sec. [12.3.2.1] We rolled two dice, getting X and Y dots, and set S to X+Y. We then found
p(X,S). Let’s find p(X,S) using matrix methods.

The key is finding a proper choice for A in (12.54)). A little thought shows that

(5)=(0) () 23

Thus the covariance matrix of (X,S)’ is

Corlx. 571 = < 1 (1) ) < Va%(X) Vag(y) > ( (1) i > (12.58)
N < mgi Vm?(y) > ( (1) 1 > (12.59)
_ (53:% Var(;ﬁ)x(/)ar(m) (12.60)

since X and Y are independent. We would then proceed as before.

This matches what we found earlier, as it should, but shows how matrix methods can be used. This
example was fairly simple, so those methods did not produce a large amount of streamlining, but
in other examples later in the book, the matrix approach will be key.

12.4.5 Example: Easy Sum Again

Let’s redo the example in Section [12.1.2] again, this time using matrix methods.
First note that

X1 4 Xo=(1,1) ( X > (12.61)
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i.e. it is of the form ((12.55). So, ([12.56|) gives us

Var(X, + X2) = (1,1) ( o.;) 0'? ) ( i ) _3 (12.62)

Of course using the matrix formulation didn’t save us much time here, but for complex problems
it’s invaluable. We will frequently have need for finding the variance of a linear combination of the
elements of a vector, exactly what we did above.

12.5 The Multivariate Normal Family of Distributions

This is a generalization of the normal distribution. It is covered in detail in Section [13.5.2] but
here is the overview:

e Just as the univariate normal family is parameterized by the mean and variance, the multi-
variate normal family has as its parameters the mean vector and the covariance matriz.

e In the bivariate case, the density looks like a three-dimensional bell, as on the cover of this
book.

e If a random vector W has a multivariate normal distribution, and A is a constant matrix,
then the new random vector AW is also multivariate normally distributed.

e The multivariate version of the Central Limit Theorem holds, i.e. the sum of i.i.d. random
vectors has an approximate multivariate normal distribution.

12.5.1 R Functions

R provides functions that compute probabilities involving this family of distributions, in the library
mvtnorm. In particular the R function pmvnorm(), which computes probabilities of “rectangu-
lar” regions for multivariate normally distributed random vectors W. The arguments we’ll use for
this function here are:

e mean: the mean vector

e sigma: the covariance matrix

e lower, upper: bounds for a multidimensional “rectangular” region of interest
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Since a multivariate normal distribution is characterized by its mean vector and covariance matrix,
the first two arguments above shouldn’t suprise you. But what about the other two?

The function finds the probability of our random vector falling into a multidimensional rectangular
region that we specify, through the arguments are lower and upper. For example, suppose we
have a trivariate normally distributed random vector (U, V, W)’ and we want to find

P(1l2<U<band —22<V <3and 1< W <10) (12.63)

Then lower would be (1.2,-2.2,1) and upper would be (5,3,10).

Note that these will typically be specified via R’s ¢() function, but default values are recycled
versions of -Inf and Inf, built-in R constants for —oo and oo.

An important special case is that in which we specify upper but allow lower to be the default
values, thus computing a probability of the form

PWy <cpy, W < ¢) (12.64)

12.5.2 Special Case: New Variable Is a Single Linear Combination of a Random
Vector

Suppose the vector U = (Uy, ..., U) has an approximately k-variate normal distribution, and we
form the scalar

Y =cUp+ ...+ Uy (12.65)

Then Y is approximately univate normal, and its (exact) variance is given by ([12.56|). It’s mean is

obtained via ((12.50).

We can then use the R functions for the univariate normal distribution, e.g. pnormy().

12.6 Indicator Random Vectors

Let’s extend the notion of indicator random variables in Section [3.9] to vectors.

Say one of events Aq, ..., A must occur, and they are disjoint. So, their probabilities sum to 1.
Define the k-component random vector I to consist of k-1 0s and one 1, where the position of the
1 is itself random; if A; occurs, then I; is 1.
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For example, say U has a U(0,1) distribution, and say A;, As and As are the events corresponding
to U <0.2,0.2<U <0.7and U > 0.7, respectively. Then the random vector I would be (1,0,0)’
in the first case, and so on.

Let p; = P(A4;). The analogs of (3.78) and (3.79)) can easily be shown to be as follows:

e The mean vector is E(I) = (p1, ..., px)’-

e Cov(I) has p;(1 — p;) as its it" element, and for i # j, element (i,j) is —DiDj-

12.7 Example: Dice GGame

This example will be short on some details, but it will really illustrate the value of using matrices.

Suppose we roll a die 50 times. Let X denote the number of rolls in which we get one dot, and let
Y be the number of times we get either two or three dots. For convenience, let’s also define 7 to
be the number of times we get four or more dots. Suppose also that we win $5 for each roll of a
one, and $2 for each roll of a two or three.

Let’s find the approximate values of the following:

e P(X <12and Y < 16)

e P(win more than $90)

e P(IX>Y>2)
The exact probabilities could, in principle, be calculated. But that would be rather cumbersome.
But we can get approximate answers by noting that the triple (X,Y,Z) has an approximate multi-

variate normal distribution. This is shown in Section [13.5.2] but it basically the derivation works
like this:

o Write (X,Y,Z) as a sum of indicator vectors (Section [12.6)), analogous to what we did in
Section (4.3

e Invoke the multivariate CLT.

Since the parameters of the multivariate normal family are the mean vector and the covariance ma-
trix, we’ll of course need to know those for the random vector (X,Y, Z)" when we call pmvnorm().
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Once again, this will be shown later, but basically it follows from Section above. Here are the
results:

E[(X,Y,Z)] = (50/6,50/3,50/2) (12.66)

and

5/36 —1/18 —1/12
Cov[(X,Y,Z)] =50 | —1/18 2/9  —1/6 (12.67)
~1/12 -1/6  1/4

Here’s a partial check: X has a binomial distribution with 50 trials and success probability 1/6, so
(4.30) tells us that Var(X) = 250/36, just as seen above.

We can now use the R multivariate normal probability function mentioned in Section to find
P(X <12 and Y < 16).

To account for the integer nature of X and Y, we call the function with upper limits of 12.5 and 16.5,
rather than 12 and 16, which is often used to get a better approximation. (Recall the “correction
for continuity,” Section ) Our code is

pl <- 1/6

p23 <- 1/3

meanvec <- 50%c(pl,p23)

varl <- 50%pl*(1-pl)

var23 <- 50*p23*(1-p23)

covarl23 <- -50%pl*p23

covarmat <- matrix(c(varl,covar123,covari23,var23) ,nrow=2)
print (pmvnorm(upper=c(12.5,16.5) ,mean=meanvec, sigma=covarmat))

We find that

P(X <12 and Y < 16) ~ 0.43 (12.68)

Now, let’s find the probability that our total winnings, T, is over $90. We know that T = 5X +
2Y, and Section above applies. We simply choose the vector ¢ to be

c=(5,2,0) (12.69)
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since

X
5,2,00| Y | =5Xx+2vV (12.70)
Z

Then Section [12.5.2 tells us that 5X + 2Y also has an approximate univariate normal distribution.
Excellent—we can now use pnorm(). We thus need the mean and variance of T, again using

Section 12.5.2¢

ET = E(5X +2Y) =5EX + 2EY = 250/6 + 100/3 = 75 (12.71)
X 5/36 —1/18 —1/12 5

Var(T)=¢ Cov | Y |e¢=(5,2,0050 | —1/18  2/9 —1/6 2 | =1625 (12.72)
Z ~1/12  -1/6  1/4 0

So, we have our answer:

> 1 — pnorm(90,75,sqrt (162.5))

[1] 0.1196583

Now to find P(X > Y > Z), we need to work with (U, V) = (X —Y,Y — Z). U and V are both

linear functions of X, Y and Z, so let’s write the matrix equation:

We need to have

X
XYV _4(vy (12.73)
Y -7
Z
S0 set
1 -1 0
A_(O ) _1) (12.74)

and then proceed as before to find P(U > 0,V > 0). Now we take lower to be (0,0), and upper
to be the default values, co in pmvnormy().
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12.7.1 Correlation Matrices

The correlation matrix corresponding to a given covariance matrix is defined as follows. Element
(i,j) is the correlation between the i* and the j** elements of the given random vector.

Here is R code to compute a correlation matrix from a covariance matrix:

covtocorr <— function(covmat) {
n <— nrow(covmat )
stddev <— vector (length=n)
cormat <— matrix(nrow=n,ncol=n)
for (i in 1:n) {
stddev[i] <— sqrt(covmat[i,i])
cormat [i,i] <— 1.0
}
for (i in 1:(n-1)) {
for (j in (i+1):n) {
tmp <— covmat[i,j] / (stddev[i]=xstddev][j])
cormat [i,]j] <— tmp
cormat[j,i] <— tmp
}
}

return (cormat)

12.7.2 Further Reading

You can see some more examples of the multivariate normal distribution, covariance matrices etc.
in a computer science context in my paper A Modified Random Perturbation Method for Database
Security (with Patrick Tendick). ACM Transactions on Database Systems, 1994, 19(1), 47-63. The
application is database security.

Exercises

1. Suppose the pair (X,Y)’ has mean vector (0,2) and covariance matrix

(2¢)

Find the covariance matrix of the pair U = (X+Y,X-2Y)".
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2. Show that

p(aX 4+ b,cY +d) = p(X,Y) (12.75)

for any constants a, b, ¢ and d.

3. Suppose X, Y and Z are ”i.i.d.” (independent, identically distributed) random variables, with
E(X*) being denoted by v, k = 1,2,3. Find Cov(XY,XZ) in terms of the v.

4. Using the properties of covariance in Section [12.1.1] show that for any random variables X and
Y, Cov(X+Y,X-Y) = Var(X) - Var(Y).

5. Suppose we wish to predict a random variable Y by using another random variable, X. We may
consider predictors of the form ¢X + d for constants c and d. Show that the values of ¢ and d that
minimize the mean squared prediction error, E[(Y — cX — d)? are

_ E(XY)-EX-EY
c= Var(X) (12.76)

E(X?)-EY — EX - E(XY)

d= Var(X)

(12.77)

6. Programs A and B consist of r and s modules, respectively, of which ¢ modules are common to
both. As a simple model, assume that each module has probability p of being correct, with the
modules acting independently. Let X and Y denote the numbers of correct modules in A and B,
respectively. Find the correlation A(X,Y) as a function of r, s, ¢ and p.

Hint: Write X = X7 + ...X,, where X; is 1 or 0, depending on whether module i of A is correct.
Of those, let X1, ..., X, correspond to the modules in common to A and B. Similarly, write ¥ =
Y1 + ...Y;, for the modules in B, again having the first ¢ of them correspond to the modules in
common. Do the same for B, and for the set of common modules.

7. Suppose we have random variables X and Y, and define the new random variable Z = 8Y. Then
which of the following is correct? (i) p(X,Z) = p(X,Y). (ii) p(X,Z) = 0. (iii) p(Y,Z) = 0. (iv)
p(X,Z) =8p(X,Y). (v) p(X,Z) = £p(X,Y). (vi) There is no special relationship.

8. Derive ((12.3)). Hint: A constant, q here, is a random variable, trivially, with 0 variance.

9. Consider a three-card hand drawn from a 52-card deck. Let X and Y denote the number of
hearts and diamonds, respectively. Find p(X,Y).

10. Consider the lightbulb example in Section Use the “mailing tubes” on Var() and Cov() to
find p(Xl, Tg)
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11. Find the following quantities for the dice example in Section [12.3.2.1

(a) Cov(X,2S)
(

)
b) Cov(X,S+Y)
(c) Cov(X+2Y,3X-Y)
)

(d) px,s(3,8)

12. Suppose X;, i = 1,2,3,4,5 are independent and each have mean 0 and variance 1. Let Y; =
X1 — Xi, 1 = 1,2,3,4. Using the material in Section find the covariance matrix of ¥ =
(Yla Yéa }/37 Y4)
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Multivariate PMFs and Densities

Individual pmfs px and densities fx don’t describe correlations betwen variables. We need some-
thing more. We need ways to describe multivariate distributions.

13.1 Multivariate Probability Mass Functions

Recall that for a single discrete random variable X, the distribution of X was defined to be a list
of all the values of X, together with the probabilities of those values. The same is done for a pair
of discrete random variables U and V, as follows.

Suppose we have a bag containing two yellow marbles, three blue ones and four green ones. We
choose four marbles from the bag at random, without replacement. Let Y and B denote the number
of yellow and blue marbles that we get. Then define the two-dimensional pmf of Y and B to be

py,B(i,j) =P(Y =iand B =j) = (13.1)

Here is a table displaying all the values of P(Y =i and B = j):

il — 0 1 2 3
0 | 0.0079 | 0.0952 | 0.1429 | 0.0317
1]0.0635 | 0.2857 | 0.1905 | 0.1587
21 0.0476 | 0.0952 | 0.0238 | 0.000

So this table is the distribution of the pair (Y,B).

Recall further that in the discrete case, we introduced a symbolic notation for the distribution of

223
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a random variable X, defined as px (i) = P(X = i), where i ranged over all values that X takes on.
We do the same thing for a pair of random variables:

Definition 25 For discrete random variables U and V, their probability mass function is defined
to be

puv(i,j) =PU =i and V = j) (13.2)

where (i,j) ranges over all values taken on by (U, V). Higher-dimensional pmfs are defined similarly,
e.g.

puvw (i, j, k) =PU=1iandV =j and W = k) (13.3)

So in our marble example above, py p(1,2) = 0.048, py,p(2,0) = 0.012 and so on.

Just as in the case of a single discrete random variable X we have

P(X € A)=> px(i (13.4)
I€EA

for any subset A of the range of X, for a discrete pair (U,V) and any subset A of the pair’s range,
we have

P[U, V)€ A) =Y puv(i,j) (13.5)

(i,5)€A

Again, consider our marble example. Suppose we want to find P(Y < B). Doing this “by hand,”
we would simply sum the relevant probabilities in the table above, which are marked in bold 